ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable 0.7 conductance plateau in quantum dots

167   0   0.0 ( 0 )
 نشر من قبل Sanghyun Jo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A consistent approach in forming the 0.7 structure by using a quantum dot rather than a quantum point contact is demonstrated. With this scheme, it was possible to tune on and off the 0.7 structure. The 0.7 structure continuously evolved into a normal integer conductance plateau by varying the tuning condition. Unlike the conventional 0.7 plateau, the new 0.7 structure was observed even at low electron temperatures down to 100 mK, with unprecedented flatness. From our results, it is concluded that electron interference should be taken into consideration to explain the 0.7 structure.



قيم البحث

اقرأ أيضاً

Complex AC-conductance, $sigma^{AC}$, in the systems with dense Ge$_{0.7}$Si$_{0.3}$ quantum dot (QD) arrays in Si has been determined from simultaneous measurements of attenuation, $DeltaGamma=Gamma(H)-Gamma(0)$, and velocity, $Delta V /V=(V(H)-V(0) ) / V(0)$, of surface acoustic waves (SAW) with frequencies $f$ = 30-300 MHz as functions of transverse magnetic field $H leq$ 18 T in the temperature range $T$ = 1-20 K. It has been shown that in the sample with dopant (B) concentration 8.2$ times 10^{11}$ cm$^{-2}$ at temperatures $T leq$4 K the AC conductivity is dominated by hopping between states localized in different QDs. The observed power-law temperature dependence, $sigma_1(H=0)propto T^{2.4}$, and weak frequency dependence, $sigma_1(H=0)propto omega^0$, of the AC conductivity are consistent with predictions of the two-site model for AC hopping conductivity for the case of $omega tau_0 gg $1, where $omega=2pi f$ is the SAW angular frequency and $tau_0$ is the typical population relaxation time. At $T >$ 7 K the AC conductivity is due to thermal activation of the carriers (holes) to the mobility edge. In intermediate temperature region 4$ < T<$ 7 K, where AC conductivity is due to a combination of hops between QDs and diffusion on the mobility edge, one succeeded to separate both contributions. Temperature dependence of hopping contribution to the conductivity above $T^*sim$ 4.5 K saturates, evidencing crossover to the regime where $omega tau_0 < $1. From crossover condition, $omega tau_0(T^*)$ = 1, the typical value, $tau_0$, of the relaxation time has been determined.
Quantum spin transport is studied in an interacting quantum dot. It is found that a conductance plateau emerges in the non-linear charge conductance by a spin bias in the Kondo regime. The conductance plateau, as a complementary to the Kondo peak, or iginates from the strong electron correlation and exchange processes in the quantum dot, and can be regarded as one of the characteristics in quantum spin transport.
313 - Alex Zazunov 2005
Transport through a single molecular conductor is considered, showing negative differential conductance behavior associated with phonon-mediated electron tunneling processes. This theoretical work is motivated by a recent experiment by Leroy et al. u sing a carbon nanotube contacted by an STM tip [Nature {bf 432}, 371 (2004)], where negative differential conductance of the breathing mode phonon side peaks could be observed. A peculiarity of this system is that the tunneling couplings which inject electrons and those which collect them on the substrate are highly asymmetrical. A quantum dot model is used, coupling a single electronic level to a local phonon, forming polaron levels. A half-shuttle mechanism is also introduced. A quantum kinetic formulation allows to derive rate equations. Assuming asymmetric tunneling rates, and in the absence of the half-shuttle coupling, negative differential conductance is obtained for a wide range of parameters. A detailed explanation of this phenomenon is provided, showing that NDC is maximal for intermediate electron-phonon coupling. In addition, in absence of a gate, the floating level results in two distinct lengths for the current plateaus, related to the capacitive couplings at the two junctions. It is shown that the half-shuttle mechanism tends to reinforce the negative differential regions, but it cannot trigger this behavior on its own.
Quantum dots realized in InAs are versatile systems to study the effect of spin-orbit interaction on the spin coherence, as well as the possibility to manipulate single spins using an electric field. We present transport measurements on quantum dots realized in InAs nanowires. Lithographically defined top-gates are used to locally deplete the nanowire and to form tunneling barriers. By using three gates, we can form either single quantum dots, or two quantum dots in series along the nanowire. Measurements of the stability diagrams for both cases show that this method is suitable for producing high quality quantum dots in InAs.
We have observed the Kondo effect in strongly coupled semiconducting nanowire quantum dots. The devices are made from indium arsenide nanowires, grown by molecular beam epitaxy, and contacted by titanium leads. The device transparency can be tuned by changing the potential on a gate electrode, and for increasing transparencies the effects dominating the transport changes from Coulomb Blockade to Universal Conductance Fluctuations with Kondo physics appearing in the intermediate region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا