ﻻ يوجد ملخص باللغة العربية
We show that a new state of matter, the d-wave Mott-insulator state (d-Mott state) (introduced recently by [H. Yao, W. F. Tsai, and S. A. Kivelson, Phys. Rev. B 76, 161104 (2007)]), which is characterized by a non-zero expectation value of a local plaquette operator embedded in an insulating state, can be engineered using ultra-cold atomic fermions in two-dimensional double-well optical lattices. We characterize and analyze the parameter regime where the $d$-Mott state is stable. We predict the testable signatures of the state in the time-of-flight measurements.
Discontinuous quantum phase transitions and the associated metastability play central roles in diverse areas of physics ranging from ferromagnetism to false vacuum decay in the early universe. Using strongly-interacting ultracold atoms in an optical
We show how strongly correlated materials could be described within the framework of an excitonic insulator formalism, and delineate the relationship between inter- and intra-band ordering phenomena. Our microscopic model of excitons clarifies the fu
We propose a novel realization of Kondo physics with ultracold atomic gases. It is based on a Fermi sea of two different hyperfine states of one atom species forming bound states with a different species, which is spatially confined in a trapping pot
We present an exact solution of an experimentally realizable and strongly interacting one-dimensional spin system which is a limiting case of a quantum Ising model with long range interaction in a transverse and longitudinal field. Pronounced quantum
We carry out textit{ab initio} study of ground state phase diagram of spin-1/2 cold fermionic atoms within two-fold degenerate $p$-band of an anisotropic optical lattice. Using the Gutzwiller variational approach, we show that a robust ferromagnetic