ترغب بنشر مسار تعليمي؟ اضغط هنا

A kpc-scale X-ray jet in the BL Lac source S5 2007+777

191   0   0.0 ( 0 )
 نشر من قبل Davide Donato
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Rita M. Sambruna




اسأل ChatGPT حول البحث

X-ray jets in AGN are commonly observed in FRII and FRI radio-galaxies, but rarely in BL Lacs, most probably due to their orientation close to the line of sight and the ensuing foreshortening effects. Only three BL Lacs are known so far to contain a kpc-scale X-ray jet. In this paper, we present the evidence for the existence of a fourth extended X-ray jet in the classical radio-selected source S5 2007+777, which for its hybrid FRI/II radio morphology has been classified as a HYMOR (HYbrid MOrphology Radio source). Our Chandra ACIS-S observations of this source revealed an X-ray counterpart to the 19-long radio jet. Interestingly, the X-ray properties of the kpc-scale jet in S5 2007+777 are very similar to those observed in FRII jets. First, the X-ray morphology closely mirrors the radio one, with the X-rays being concentrated in the discrete radio knots. Second, the X-ray continuum of the jet/brightest knot is described by a very hard power law, with photon index Gamma_x~1, although the uncertainties are large. Third, the optical upper limit from archival HST data implies a concave radio-to-X-ray SED. If the X-ray emission is attributed to IC/CMB with equipartition, strong beaming (delta=13) is required, implying a very large scale (Mpc) jet. The beaming requirement can be somewhat relaxed assuming a magnetic field lower than equipartition. Alternatively, synchrotron emission from a second population of very high-energy electrons is viable. Comparison to other HYMOR jets detected with Chandra is discussed, as well as general implications for the origin of the FRI/II division.



قيم البحث

اقرأ أيضاً

132 - R. M. Sambruna 2007
The BL Lac S5 2007+777 was observed by us with Chandra, to find the X-ray counterpart to its 18 radio jet, and study its structure. Indeed, a bright X-ray jet was discovered in the 33 ks ACIS-S image of the source. We present its properties and briefly discuss the implications.
We have observed S5 2007+777 and 3C371 in the B and I bands for 13 and 8 nights, respectively, during various observing runs in 2001, 2002 and 2004. The observations resulted in almost evenly sampled light curves, 6-9 hours long. We do not detect any flares within the observed light curves, but we do observe small amplitude, significant variations, in both bands, on time scales of hours and days. The average variability amplitude on time scales of minutes/hours is 2.5% and 1-1.5% in the case of S5 2007+777 and 3C371, respectively. The average amplitudes increase to 5-12% and 4-6%, respectively, on time scales of days. We find that the B and I band variations are highly correlated, on both short and long time scales. During the 2004 observations, which resulted in the longest light curves, we observe two well defined flux-decay and rising trends in the light curves of both objects. When the flux decays, we observe significant delays, with the B band flux decaying faster than the flux in the I band. As a result, we also observe significant, flux related spectral variations as well. The flux-spectral relation is rather complicated, with loop-like structures forming during the flux evolution. The presence of spectral variations imply that the observed variability is not caused by geometric effects. On the other hand, our results are fully consistent with the hypothesis that the observed variations are caused by perturbations which affect different regions in the jet of the sources.
We present an X-ray image of the BL Lacertae object OJ287 revealing a long jet, curved by 55 degrees and extending 20, or 90 kpc from the nucleus. This de-projects to >1 Mpc based on the viewing angle on parsec scales. Radio emission follows the gene ral X-ray morphology but extends even farther from the nucleus. The upper limit to the isotropic radio luminosity, ~2E24 W/Hz, places the source in the Fanaroff-Riley 1 (FR 1) class, as expected for BL Lac objects. The spectral energy distribution indicates that the extended X-ray emission is from inverse Compton scattering of cosmic microwave background photons. In this case, the derived magnetic field is B ~ 5 microGauss, the minimum electron energy is 7-40 m_e c^2, and the Doppler factor is delta ~ 8 in a knot 8 from the nucleus. The minimum total kinetic power of the jet is 1-2E45 erg/s. Upstream of the bend, the width of the X-ray emission in the jet is about half the projected distance from the nucleus. This implies that the highly relativistic bulk motion is not limited to an extremely thin spine, as has been proposed previously for FR 1 sources. The bending of the jet, the deceleration of the flow from parsec to kiloparsec scales, and the knotty structure can all be caused by standing shocks inclined by ~7 degrees to the jet axis. Moving shocks resulting from major changes in the flow properties can also reproduce the knotty structure, but such a model does not explain as many of the observational details.
125 - B. Rani 2015
The analysis of $gamma$-ray flux variability along with the parsec-scale jet kinematics suggests that the high-energy radiation in the BL Lac object S5 0716+714 has a significant correlation with the mm-VLBI core flux density and with the local orien tation of the inner jet flow. For the first time in any blazar, we report a significant correlation between the $gamma$-ray flux variations and the variations in the local orientation of the jet outflow (position angle). We find that the $gamma$-ray flux variations lead the 7~mm VLBI core flux variations by 82$pm$32~days, which suggests that the high-energy emission in S5 0716+714 is coming from a region located 3.8$pm$1.9~parsecs closer to the central black hole than the core seen on the mm-VLBI images. The results imply a strong physical and casual connection between $gamma$-ray emission and the inner jet morphology in the source.
BL Lac objects are known to have very energetic jets pointing towards the observer under small viewing angles. Many of these show high luminosity over the whole energy range up to TeV, mostly classified as high-energy peaked BL Lac objects. Recently, TeV gamma-ray emission was detected from a low-energy peaked BL Lac object. Interestingly, this source has also a clear detection of an X-ray jet. We present a detailed study of this X-ray jet and its connection to the radio jet as well as a study of the underlying physical processes in the energetic jet, producing emission from the radio to the TeV range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا