The commensurate $p/q$-filled $n$-component Hubbard chain was investigated by bosonization and high-precision density-matrix renormalization-group analysis. It was found that depending on the relation between the number of components $n$, and the filling parameter $q$, the system shows metallic or insulating behavior, and for special fillings bond-ordered (dimerized, trimerized, tetramerized etc.) ground state develops in the insulating phase. A mean-field analysis shows that this bond ordering is a direct consequence of the spin-exchange interaction, which plays a crucial role in the one-parameter Hubbard model -- not only for infinite Coulomb repulsion, but for intermediate values as well.