ترغب بنشر مسار تعليمي؟ اضغط هنا

A Quantum-Enhanced Prototype Gravitational-Wave Detector

172   0   0.0 ( 0 )
 نشر من قبل Keisuke Goda
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The quantum nature of the electromagnetic field imposes a fundamental limit on the sensitivity of optical precision measurements such as spectroscopy, microscopy, and interferometry. The so-called quantum limit is set by the zero-point fluctuations of the electromagnetic field, which constrain the precision with which optical signals can be measured. In the world of precision measurement, laser-interferometric gravitational wave (GW) detectors are the most sensitive position meters ever operated, capable of measuring distance changes on the order of 10^-18 m RMS over kilometer separations caused by GWs from astronomical sources. The sensitivity of currently operational and future GW detectors is limited by quantum optical noise. Here we demonstrate a 44% improvement in displacement sensitivity of a prototype GW detector with suspended quasi-free mirrors at frequencies where the sensitivity is shot-noise-limited, by injection of a squeezed state of light. This demonstration is a critical step toward implementation of squeezing-enhancement in large-scale GW detectors.



قيم البحث

اقرأ أيضاً

We study a cross-shaped cavity filled with superfluid $^4$He as a prototype resonant-mass gravitational wave detector. Using a membrane and a re-entrant microwave cavity as a sensitive optomechanical transducer, we were able to observe the thermally excited high-$Q$ acoustic modes of the helium at 20 mK temperature and achieved a strain sensitivity of $8 times 10^{-19}$ Hz$^{-1/2}$ to gravitational waves. To facilitate the broadband detection of continuous gravitational waves, we tune the kilohertz-scale mechanical resonance frequencies up to 173 Hz/bar by pressurizing the helium. With reasonable improvements, this architecture will enable the search for GWs in the 1-30 kHz range, relevant for a number of astrophysical sources both within and beyond the Standard Model.
The gravitational wave detector of higher sensitivity and greater bandwidth in kilohertz window is required for future gravitational wave astronomy and cosmology. Here we present a new type broadband high frequency laser interferometer gravitational wave detector utilizing polarization of light as signal carrier. Except for Fabry-Perot cavity arms we introduce dual power recycling to further amplify the gravitational wave signals. A novel method of weak measurement amplification is used to amplify signals for detection and to guarantee the long-term run of detector. Equipped with squeezed light, the proposed detector is shown sensitive enough within the window from 300Hz to several kHz, making it suitable for the study of high frequency gravitational wave sources. With the proposed detector added in the current detection network, we show that the ability of exploring binary neutron stars merger physics be significantly improved. The detector presented here is expected to provide an alternative way of exploring the possible ground-based gravitational wave detector for the need of future research.
The fast progress in improving the sensitivity of the gravitational-wave (GW) detectors, we all have witnessed in the recent years, has propelled the scientific community to the point, when quantum behaviour of such immense measurement devices as kil ometer-long interferometers starts to matter. The time, when their sensitivity will be mainly limited by the quantum noise of light is round the corner, and finding the ways to reduce it will become a necessity. Therefore, the primary goal we pursued in this review was to familiarize a broad spectrum of readers with the theory of quantum measurements in the very form it finds application in the area of gravitational-wave detection. We focus on how quantum noise arises in gravitational-wave interferometers and what limitations it imposes on the achievable sensitivity. We start from the very basic concepts and gradually advance to the general linear quantum measurement theory and its application to the calculation of quantum noise in the contemporary and planned interferometric detectors of gravitational radiation of the first and second generation. Special attention is paid to the concept of Standard Quantum Limit and the methods of its surmounting.
The fundamental quantum interferometry bound limits the sensitivity of an interferometer for a given total rate of photons and for a given decoherence rate inside the measurement device.We theoretically show that the recently reported quantum-noise l imited sensitivity of the squeezed-light-enhanced gravitational-wave detector GEO600 is exceedingly close to this bound, given the present amount of optical loss. Furthermore, our result proves that the employed combination of a bright coherent state and a squeezed vacuum state is generally the optimum practical approach for phase estimation with high precision on absolute scales. Based on our analysis we conclude that neither the application of Fock states nor N00N states or any other sophisticated nonclassical quantum states would have yielded an appreciably higher quantum-noise limited sensitivity.
Squeezed states of light have been recently used to improve the sensitivity of laser interferometric gravitational-wave detectors beyond the quantum limit. To completely establish quantum engineering as a realistic option for the next generation of d etectors, it is crucial to study and quantify the noise coupling mechanisms which injection of squeezed states could potentially introduce. We present a direct measurement of the impact of backscattered light from a squeezed-light source deployed on one of the 4 km long detectors of the Laser Interferometric Gravitational Wave Observatory (LIGO). We also show how our measurements inform the design of squeezed light sources compatible with the even more sensitive advanced detectors currently under construction, such as Advanced LIGO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا