ﻻ يوجد ملخص باللغة العربية
In this work we introduce Heath-Jarrow-Morton (HJM) interest rate models driven by fractional Brownian motions. By using support arguments we prove that the resulting model is arbitrage free under proportional transaction costs in the same spirit of Guasoni [Math. Finance 16 (2006) 569-582]. In particular, we obtain a drift condition which is similar in nature to the classical HJM no-arbitrage drift restriction. The second part of this paper deals with consistency problems related to the fractional HJM dynamics. We give a fairly complete characterization of finite-dimensional invariant manifolds for HJM models with fractional Brownian motion by means of Nagumo-type conditions. As an application, we investigate consistency of Nelson-Siegel family with respect to Ho-Lee and Hull-White models. It turns out that similar to the Brownian case such a family does not go well with the fractional HJM dynamics with deterministic volatility. In fact, there is no nontrivial fractional interest rate model consistent with the Nelson-Siegel family.
We present an option pricing formula for European options in a stochastic volatility model. In particular, the volatility process is defined using a fractional integral of a diffusion process and both the stock price and the volatility processes have
We are interested in the existence of equivalent martingale measures and the detection of arbitrage opportunities in markets where several multi-asset derivatives are traded simultaneously. More specifically, we consider a financial market with multi
We consider rough stochastic volatility models where the driving noise of volatility has fractional scaling, in the rough regime of Hurst parameter $H < 1/2$. This regime recently attracted a lot of attention both from the statistical and option pric
Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying f
The no-arbitrage property is widely accepted to be a centerpiece of modern financial mathematics and could be considered to be a financial law applicable to a large class of (idealized) markets. The paper addresses the following basic question: can o