ﻻ يوجد ملخص باللغة العربية
We present rigorous upper and lower bounds for the zero-momentum gluon propagator D(0) of Yang-Mills theories in terms of the average value of the gluon field. This allows us to perform a controlled extrapolation of lattice data to infinite volume, showing that the infrared limit of the Landau-gauge gluon propagator in SU(2) gauge theory is finite and nonzero in three and in four space-time dimensions. In the two-dimensional case we find D(0) = 0, in agreement with Ref. [1]. We suggest an explanation for these results. We note that our discussion is general, although we only apply our analysis to pure gauge theory in Landau gauge. Simulations have been performed on the IBM supercomputer at the University of Sao Paulo.
Motivated in part by the pseudo-Nambu Goldstone Boson mechanism of electroweak symmetry breaking in Composite Higgs Models, in part by dark matter scenarios with strongly coupled origin, as well as by general theoretical considerations related to the
We present explicit numerical evidence of reflection-positivity violation for the lattice Landau gluon propagator in three-dimensional pure SU(2) gauge theory. We use data obtained at very large lattice volumes (V = 80^3, 140^3) and for three differe
We report the masses of the lightest spin-0 and spin-2 glueballs obtained in an extensive lattice study of the continuum and infinite volume limits of $Sp(N_c)$ gauge theories for $N_c=2,4,6,8$. We also extrapolate the combined results towards the la
We study the SU(3) gluon propagator in renormalizable $R_xi$ gauges implemented on a symmetric lattice with a total volume of (3.25 fm)$^4$ for values of the guage fixing parameter up to $xi=0.5$. As expected, the longitudinal gluon dressing function
We prove that magnetic charge does not exist as a physical observable on the physical Hilbert space of the pure SU(2) gauge theory. The abelian magnetic monopoles seen in lattice simulations are then interpreted as artifacts of gauge fixing. The appa