ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-energy and lifetime of Shockley and image states on Cu(100) and Cu(111): Beyond the GW approximation of many-body theory

126   0   0.0 ( 0 )
 نشر من قبل J. M. Pitarke
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report many-body calculations of the self-energy and lifetime of Shockley and image states on the (100) and (111) surfaces of Cu that go beyond the $GW$ approximation of many-body theory. The self-energy is computed in the framework of the GWGamma approximation by including short-range exchange-correlation (XC) effects both in the screened interaction W (beyond the random-phase approximation) and in the expansion of the self-energy in terms of W (beyond the GW approximation). Exchange-correlation effects are described within time-dependent density-functional theory from the knowledge of an adiabatic nonlocal XC kernel that goes beyond the local-density approximation.



قيم البحث

اقرأ أيضاً

We present calculations on energy- and time-resolved two-photon photoemission spectra of images states in Cu(100) and Cu(111) surfaces. The surface is modeled by a 1D effective potential and the states are propagated within a real-space, real-time me thod. To obtain the energy resolved spectra we employ a geometrical approach based on a subdivision of space into two regions. We treat electronic inelastic effects by taking into account the scattering rates calculated within a GW scheme. To get further insight into the decaying mechanism we have also studied the effect of the variation of the classical Hartree potential during the excitation. This effect turns out to be small.
We present density-functional results on the lifetime of the (111) surface state of the noble metals. We consider scattering on the Fermi surface caused by impurity atoms belonging to the 3d and 4sp series. The results are analyzed with respect to fi lm thickness and with respect to separation of scattering into bulk or into surface states. While for impurities in the surface layer the overall trends are similar to the long-known bulk-state scattering, for adatom-induced scattering we find a surprising behavior with respect to the adatom atomic number. A plateau emerges in the scattering rate of the 3d adatoms, instead of a peak characteristic of the d resonance. Additionally, the scattering rate of 4sp adatoms changes in a zig-zag pattern, contrary to a smooth parabolic increase following Lindes rule that is observed in bulk. We interpret these results in terms of the weaker charge-screening and of interference effects induced by the lowering of symmetry at the surface.
We present angle-resolved photoemission data from Cu(111). Using a focused 6 eV continuous wave laser for photo-excitation, we achieve a high effective momentum resolution enabling the first detection of the Rashba spin splitting in the Shockley surf ace state on Cu(111). The magnitude of the spin-splitting of Delta k ~ 0.006 A^-1 is surprisingly large and exceeds values predicted for the analogous surface state on Ag(111) but is reproduced by first principles calculations. We further resolve a kink in the dispersion which we attribute to electron-phonon coupling.
The quasiparticle band structures of 3d transition metals, ferromagnetic Fe, Ni and paramagnetic Cu, are calculated by the GW approximation. The width of occupied 3d valence band, which is overestimated in the LSDA, is in good agreement with experime ntal observation. However the exchange splitting and satellite in spectra are not reproduced and it is required to go beyond the GW approximation. The effects of static screening and dynamical correlation are discussed in detail in comparison with the results of the static COHSEX approximation. The dynamical screening effects are important for band width narrowing.
108 - A. Siber , B. Gumhalter , J. Braun 2000
The surface phonon dispersion curves of commensurate Xe monolayers on Cu(111) and incommensurate Xe monolayers on Cu(001) surfaces have been measured using He atom scattering (HAS) time of flight (TOF) spectroscopy. The TOF spectra are interpreted by combining quantum scattering calculations with the dynamical matrix description of the surface vibrations. Both a vertically polarized Einstein-like mode and another, acoustic-like mode of dominantly longitudinal character, are identified. The latter mode is characterized by the presence and absence of the zone center frequency gap in the commensurate and incommensurate adlayers, respectively. The microscopic description of the TOF spectral intensities is based on the extensive theoretical studies of the interplay of the phonon dynamics, projectile-surface potentials, multi-quantum interference and projectile recoil, and their effect on the HAS spectra. Both single and multi-quantum spectral features observed over a wide range of He atom incident energies and substrate temperatures are successfully explained by the theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا