We construct a mean-field formulation of the thermodynamics of ion solvation in immiscible polar binary mixtures. Assuming an equilibrium planar interface separating two semi-infinite regions of different constant dielectric medium, we study the electrostatic phenomenon of differential adsorption of ions at the interface. Using general thermodynamic considerations, we construct the mean-field $Omega$-potential and demonstrate the spontaneous formation of an electric double-layer around the interface necessarily follow. In our framework, we can also relate both the bulk ion densities in the two phases and the distribution potential across the interface to the fundamental Born free energy of ion polarization. We further illustrate this selective ion adsorption phenomenon in respective examples of fully permeable membranes that are neutral, negative, or positive in charge polarity.