ﻻ يوجد ملخص باللغة العربية
The HARP system of resistive plate chambers (RPCs) was designed to perform particle identification by the measurement of the difference in the time-of-flight of different particles. In previous papers an apparent discrepancy was shown between the response of the RPCs to minimum ionizing pions and heavily ionizing protons. Using the kinematics of elastic scattering off a hydrogen target a controlled beam of low momentum recoil protons was directed onto the chambers. With this method the trajectory and momentum, and hence the time-of-flight of the protons can be precisely predicted without need for a measurement of momentum of the protons. It is demonstrated that the measurement of the time-of-arrival of particles by the thin gas-gap glass RPC system of the HARP experiment depends on the primary ionization deposited by the particle in the detector.
The Resistive Plate Chamber (RPC) muon subsystem contributes significantly to the formation of the trigger decision and reconstruction of the muon trajectory parameters. Simulation of the RPC response is a crucial part of the entire CMS Monte Carlo s
A new design of highly granular hadronic calorimeter using Glass Resistive Plate Chambers (GRPCs) with embedded electronics has been proposed for the future International Linear Collider (ILC) experiments. It features a 2-bit threshold semi-digital r
Optimization of spacer, gas distribution inside glass resistive plate chamber (RPC) is reported. Simulation studies demonstrate improvements on the gas flow velocity homogeneity and lower vorticity inside the gas chamber. The optimized spacer configu
This paper reports on detailed measurements of the performance of Resistive Plate Chambers in a proton beam with variable intensity. Short term effects, such as dead time, are studied using consecutive events. On larger time scales, for various beam
The DHCAL, the Digital Hadron Calorimeter, is a prototype calorimeter based on Resistive Plate Chambers (RPCs). The design emphasizes the imaging capabilities of the detector in an effort to optimize the calorimeter for the application of Particle Fl