ﻻ يوجد ملخص باللغة العربية
We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high- resolution HIRES spectra at 2.0 < z < 6.4. From the HIRES spectra, we obtain a lower limit of mwdm > 1.2 keV 2 sigma if the WDM consists of early decoupled thermal relics and mwdm > 5.6 keV (2 sigma) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-alpha flux power spectrum, we get mwdm > 4 keV and mwdm > 28 keV (2 sigma) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor two.
We present new measurements of the free-streaming of warm dark matter (WDM) from Lyman-$alpha$ flux-power spectra. We use data from the medium resolution, intermediate redshift XQ-100 sample observed with the X-shooter spectrograph ($z=3 - 4.2$) and
We present updated constraints on the free-streaming of warm dark matter (WDM) particles derived from an analysis of the Lya flux power spectrum measured from high-resolution spectra of 25 z > 4 quasars obtained with the Keck High Resolution Echelle
We present a new compilation of inferences of the linear 3D matter power spectrum at redshift $z,{=},0$ from a variety of probes spanning several orders of magnitude in physical scale and in cosmic history. We develop a new lower-noise method for per
We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter from Lyman-$alpha$ forest data. Extremely light bosons with a De Broglie wavelength of $sim 1$ kpc have been suggested as dark matter candidates that may resolve
The Lyman-$alpha$ forest is a powerful tool to constrain warm dark matter models (WDM). Its main observable -- flux power spectrum -- should exhibit a suppression at small scales in WDM models. This suppression, however, can be mimicked by a number o