ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of squeezed light with 10dB quantum noise reduction

100   0   0.0 ( 0 )
 نشر من قبل Henning Vahlbruch
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Squeezing of lights quantum noise requires temporal rearranging of photons. This again corresponds to creation of quantum correlations between individual photons. Squeezed light is a non-classical manifestation of light with great potential in high-precision quantum measurements, for example in the detection of gravitational waves. Equally promising applications have been proposed in quantum communication. However, after 20 years of intensive research doubts arose whether strong squeezing can ever be realized as required for eminent applications. Here we show experimentally that strong squeezing of lights quantum noise is possible. We reached a benchmark squeezing factor of 10 in power (10dB). Thorough analysis reveals that even higher squeezing factors will be feasible in our setup.



قيم البحث

اقرأ أيضاً

Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be at least an order of magnitude more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters
We present a technique for squeezed light detection based on direct imaging of the displaced-squeezed-vacuum state using a CCD camera. We show that the squeezing parameter can be accurately estimated using only the first two moments of the recorded p ixel-to-pixel photon fluctuation statistics, with accuracy that rivals that of the standard squeezing detection methods such as a balanced homodyne detection. Finally, we numerically simulate the camera operation, reproducing the noisy experimental results with low signal samplings and confirming the theory with high signal samplings.
We propose Gaussian quantum illumination(QI) protocol exploiting asymmetrically squeezed two-mode(ASTM) state that is generated by applying single-mode squeezing operations on each mode of an initial two-mode squeezed vacuum(TMSV) state, in order to overcome the limited brightness of a TMSV state. We show that the performance of the optimal receiver is enhanced by local squeezing operation on a signal mode whereas the performance of a realistic receiver can be enhanced by local squeezing operations on both input modes. Under a fixed mean photon number of the signal mode, the ASTM state can be close to the TMSV state in the performance of QI while there is a threshold of beating classical illumination in the mean photon number of the initial TMSV state. We also verify that quantum discord cannot be a resource of quantum advantage in the Gaussian QI using the ASTM state, which is a counterexample of a previous claim.
We produce a 600-ns pulse of 1.86-dB squeezed vacuum at 795 nm in an optical parametric amplifier and store it in a rubidium vapor cell for 1 us using electromagnetically induced transparency. The recovered pulse, analyzed using time-domain homodyne tomography, exhibits up to 0.21+-0.04 dB of squeezing. We identify the factors leading to the degradation of squeezing and investigate the phase evolution of the atomic coherence during the storage interval.
113 - Eyob A. Sete , H. Eleuch 2011
We investigate the quantum statistical properties of the light emitted by a quantum well interacting with squeezed light from a degenerate subthreshold optical parametric oscillator. We obtain analytical solutions for the pertinent quantum Langevin e quations in the strong coupling and low excitation regimes. Using these solutions we calculate the intensity spectrum, autocorrelation function, quadrature squeezing for the fluorescent light. We show that the fluorescent light exhibits bunching and quadrature squeezing. We also show that the squeezed light leads to narrowing of the width of the spectrum of the fluorescent light.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا