ﻻ يوجد ملخص باللغة العربية
We study theoretically the Josephson effect in d-wave superconductor / diffusive normal metal /insulator/ diffusive normal metal/ d-wave superconductor (D/DN/I/DN/D) junctions. This model is aimed to describe practical junctions in high-$T_C$ cuprate superconductors, in which the product of the critical Josephson current ($I_C$) and the normal state resistance ($R$) (the so-called $I_{rm C}R$ product) is very small compared to the prediction of the standard theory. We show that the $I_{rm C}R$ product in D/DN/I/DN/D junctions can be much smaller than that in d-wave superconductor / insulator / d-wave superconductor junctions and formulate the conditions necessary to achieve large $I_{rm C}R$ product in D/DN/I/DN/D junctions. The proposed theory describes the behavior of $I_{rm C}R$ products quantitatively in high-$T_{rm C}$ cuprate junctions.
We show that a constriction-type Josephson junction realized by an epitactic thin film of a d-wave superconductor with an appropriate boundary geometry exhibits intrinsic phase differences between 0 and pi depending on geometric parameters and temper
Measurements of the differential conductance spectra of YBa2Cu3O7-SrRuO3 and YBa2Cu3O7-La0.67Ca_0.33MnO3 ramp-type junctions along the node and anti-node directions are reported. The results are consistent with a crossed Andreev reflection effect onl
We present a cluster algorithm for resistively shunted Josephson junctions and similar physical systems, which dramatically improves sampling efficiency. The algorithm combines local updates in Fourier space with rejection-free cluster updates which
Topological Josephson junctions (JJs), which contain Majorana bound states, are expected to exhibit 4$pi$-periodic current-phase relation, thereby resulting in doubled Shapiro steps under microwave irradiation. We performed numerical calculations of
Josephson junctions based on three-dimensional topological insulators offer intriguing possibilities to realize unconventional $p$-wave pairing and Majorana modes. Here, we provide a detailed study of the effect of a uniform magnetization in the norm