استخلاص السمات الأمثلية من الصور الشعاعية X-Ray لتشخيص الاصابة بمرض covid-19


الملخص بالعربية

ونتيجة تفشي covid-19 بشكل هائل حول العالم وتزايد عدد الإصابات والوفيات بسببه كان له الأثر الكبير في ضرورة البحث عن أساليب سريعة لتشخيص covid-19. فتم إيجاد الحلول التقنية الأمثلية باستخدام التعلم العميق من خلال بناء نموذج يساعد على استخلاص السمات الأمثلية من الصور الشعاعية والتي بدورها تدخل إلى مصنفات ويتم تصنيفها بشكل أسرع إلى أشخاص مصابة أم طبيعية. وهذا يساعد في الحد من انتشاره عن طريق اتخاذ الإجراءات اللازمة مع الأشخاص المصابين وعزلهم عن الأشخاص الآخرين. لقد استخدمنا نموذج CNN يساعد في استخلاص السمات من الصور الشعاعية الصدرية X-Ray ومن ثم إدخال تلك السمات إلى مصنفات لتشخيص المرض بحالتيه الإيجابية والسلبية والغاية من ذلك مساعدة المؤسسات الصحية في السرعة بتشخيص المرض واتخاذ التدابير اللازمة بعد ذلك.

المراجع المستخدمة

Arman Haghanifar, M ahdiyar Molahasani Majdabadi, YounheeChoi, S. Deivalakshmi, SeokbumKo," COVID-CXNET: DETECTING COVID-19 IN FRONTAL CHEST X-RAY IMAGES USING DEEP LEARNING"30 July 2020.

تحميل البحث