يهدف المشروع في المقام الأول إلى توظيف الذكاء الاصطناعي ، وتحديداً مهارات برمجة شبكة عصبية حيث الشبكات العصبية بدورها هي شبكات مهتمة بالتدريب والتعلم من الخطأ ، وتوظيف هذا الخطأ لتحقيق أفضل النتائج. (CNN) على وجه الخصوص هي واحدة من أهم الشبكات العصبية التي تعالج مشاكل وقضايا التصنيف. وبالتالي فإن هذا المشروع يهدف إلى تصميم شبكة عصبية التفافية تصنف المركبات إلى عدة أنواع حيث سنقوم بتصميم الشبكة وتدريبها على قاعدة البيانات حيث أن قاعدة البيانات تتضمن صورًا لأنواع متعددة من المركبات وستقوم الشبكة بتصنيف كل صورة إلى نوعها ، بعد تعديل الصور وإجراء التغييرات المناسبة وتحويلها إلى اللون الرمادي واكتشاف الحواف والخطوط وبعد أن تصبح الصور جاهزة تبدأ عملية التدريب وبعد انتهاء عملية التدريب سنخرج بنتائج التصنيف وبعدها اختبار بمجموعة جديدة من الصور ومن اهم تطبيقات هذا المشروع الالتزام برصف السيارات والشاحنات والمركبات بشكل عام وكأن صورة تم ادخالها كسيارة لعينة السيارة وهي شاحنة ، على سبيل المثال ، سيعطي هذا خطأ حيث ستكتشف الشبكة ذلك من خلال فحصها وتصنيفها. كشاحنة ، نكتشف أن هناك انتهاكًا لقوانين الرصف