اكتسبت توليف البيانات لتحليل الدلالي اهتماما متزايدا مؤخرا. ومع ذلك، فإن معظم الطرق تتطلب قواعد يدوية (عالية الدقة) في عملية توليدها، مما يعوق استكشاف بيانات غير مرئية متنوعة. في هذا العمل، نقترح نموذجا عاما يتميز ببرنامج PCFG (غير العصبي) نماذج تكوين البرامج (E.G.، SQL)، ونموذج الترجمة المستندة إلى BART خرائط برنامج إلى كلام. نظرا لبساطة PCFG و BART المدربة مسبقا، يمكن تعلم نموذجنا التوليدي بكفاءة من البيانات الموجودة في متناول اليد. علاوة على ذلك، يؤدي التركيبات النمذجة بشكل صريح باستخدام PCFG إلى استكشاف أفضل لبرامج غير مرئية، وبالتالي توليد بيانات أكثر تنوعا. نقوم بتقييم طريقتنا في كل من الإعدادات داخل المجال والخروج من تحليل النص إلى SQL على المعايير القياسية للجهازية والعنكب العنكبوت، على التوالي. تبين نتائجنا التجريبية أن البيانات المركبة التي تم إنشاؤها من طرازنا يمكن أن تساعد بشكل كبير في محلل الدلالي يحقق تعميم أفضل أو مجال.