تمنح نماذج اللغة العصبية المدربة مسبقا أداء عال في مهام الاستدلال اللغوي (NLI).ولكن ما إذا كانوا يفهمون فعلا معنى التسلسلات المصنعة لا يزال غير واضح.نقترح جناح اختبار التشخيص الجديد الذي يسمح بتقييم ما إذا كانت مجموعة البيانات تشكل اختبارا جيدا لتقييم النماذج معنى فهم القدرات.نحن على وجه التحديد تطبيق تحويلات الفساد التي تسيطر عليها إلى المعايير المستخدمة على نطاق واسع (MNLI و Anli)، والتي تنطوي على إزالة فئات الكلمات بأكملها وغالبا ما تؤدي إلى أزواج الجملة غير الحسية.إذا ظلت دقة النموذجية على البيانات التالفة مرتفعة، فمن المحتمل أن تحتوي مجموعة البيانات على تحيزات إحصائية ومصنوعات تصريفات توقع التنبؤ.عكسيا، يشير انخفاض كبير في الدقة النموذجية إلى أن مجموعة البيانات الأصلية توفر تحديا صحيحا لقدرات منطق النماذج.وبالتالي، يمكن أن تكون عناصر التحكم المقترحة لدينا بمثابة اختبار تحطم لتطوير بيانات عالية الجودة لمهام NLI.