ﻻ يوجد ملخص باللغة العربية
We argue the integrability of the generalized KdV(GKdV) equation using the Painleve test. For $d( le 2)$ dimensional space, GKdV equation passes the Painleve test but does not for $d geq 3$ dimensional space. We also apply the Ablowitz-Ramani-Segurs conjecture to the GKdV equation in order to complement the Painleve test.
Four 4-dimensional Painleve-type equations are obtained by isomonodromic deformation of Fuchsian equations: they are the Garnier system in two variables, the Fuji-Suzuki system, the Sasano system, and the sixth matrix Painleve system. Degenerating th
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painleve equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The soluti
We consider the initial-value problem for the Sasa-Satsuma equation on the line with decaying initial data. Using a Riemann-Hilbert formulation and steepest descent arguments, we compute the long-time asymptotics of the solution in the sector $|x| le
We study the Cauchy problem for the Korteweg-de Vries (KdV) hierarchy in the small dispersion limit where $eto 0$. For negative analytic initial data with a single negative hump, we prove that for small times, the solution is approximated by the solu
Under three relations connecting the field variables of Toda flows and that of KdV flows, we present three new sequences of combination of the equations in the Toda hierarchy which have the KdV hierarchy as a continuous limit. The relation between th