ﻻ يوجد ملخص باللغة العربية
The relativistic Toda lattice equation is decomposed into three Toda systems, the Toda lattice itself, Backlund transformation of Toda lattice and discrete time Toda lattice. It is shown that the solutions of the equation are given in terms of the Casorati determinant. By using the Casoratian technique, the bilinear equations of Toda systems are reduced to the Laplace expansion form for determinants. The $N$-soliton solution is explicitly constructed in the form of the Casorati determinant.
Casorati determinant solution to the non-autonomous discrete KdV equation is constructed by using the bilinear formalism. We present three different bilinear formulations which have different origins.
We study the classical Toda lattice with domain wall initial conditions, for which left and right half lattice are in thermal equilibrium but with distinct parameters of pressure, mean velocity, and temperature. In the hydrodynamic regime the respect
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
The $K$-homology ring of the affine Grassmannian of $SL_n(C)$ was studied by Lam, Schilling, and Shimozono. It is realized as a certain concrete Hopf subring of the ring of symmetric functions. On the other hand, for the quantum $K$-theory of the fla
We construct a family of second-order linear difference equations parametrized by the hypergeometric solution of the elliptic Painleve equation (or higher-order analogues), and admitting a large family of monodromy-preserving deformations. The soluti