ترغب بنشر مسار تعليمي؟ اضغط هنا

Rapid sampling through quantum computing

214   0   0.0 ( 0 )
 نشر من قبل Lov K. Grover
 تاريخ النشر 1999
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Lov K. Grover




اسأل ChatGPT حول البحث

This paper extends the quantum search class of algorithms to the multiple solution case. It is shown that, like the basic search algorithm, these too can be represented as a rotation in an appropriately defined two dimensional vector space. This yields new applications - an algorithm is presented that can create an arbitrarily specified quantum superposition on a space of size N in O(sqrt(N)) steps. By making a measurement on this superposition, it is possible to obtain a sample according to an arbitrarily specified classical probability distribution in O(sqrt(N)) steps. A classical algorithm would need O(N) steps.



قيم البحث

اقرأ أيضاً

Thinning antenna arrays through quantum Fourier transform (QFT) is proposed. Given the lattice of the candidate locations for the array elements, the problem of selecting which antenna location has to be either occupied or not by an array element is formulated in the quantum computing (QC) framework and then addressed with an ad-hoc design method based on a suitable implementation of the QFT algorithm. Representative numerical results are presented and discussed to point out the features and the advantages of the proposed QC-based thinning technique.
Quantum computation offers the potential to solve fundamental yet otherwise intractable problems across a range of active fields of research. Recently, universal quantum-logic gate sets - the building blocks for a quantum computer - have been demonst rated in several physical architectures. A serious obstacle to a full-scale implementation is the sheer number of these gates required to implement even small quantum algorithms. Here we present and demonstrate a general technique that harnesses higher dimensions of quantum systems to significantly reduce this number, allowing the construction of key quantum circuits with existing technology. We are thereby able to present the first implementation of two key quantum circuits: the three-qubit Toffoli and the two-qubit controlled-unitary. The gates are realised in a linear optical architecture, which would otherwise be absolutely infeasible with current technology.
Boson sampling (BS) is a multimode linear optical problem that is expected to be intractable on classical computers. It was recently suggested that molecular vibronic spectroscopy (MVS) is computationally as complex as BS. In this review, we discuss the correspondence relation between BS and MVS and briefly introduce the experimental demonstrations of the molecular spectroscopic process using quantum devices. The similarity of the two theories results in another BS setup, which is called vibronic BS. The hierarchical structure of vibronic BS, which includes the original BS and other Gaussian BS, is also explained.
163 - Ran Li , Frank Gaitan 2010
Twisted rapid passage is a type of non-adiabatic rapid passage that generates controllable quantum interference effects that were first observed experimentally in 2003. It is shown that twisted rapid passage sweeps can be used to implement a universa l set of quantum gates that operate with high-fidelity. The gate set consists of the Hadamard and NOT gates, together with variants of the phase, pi/8, and controlled-phase gates. For each gate g in the universal set, sweep parameter values are provided which numerical simulations indicate will produce a unitary operation that approximates g with error probability less than 10**(-4). Note that all gates in the universal set are implemented using a single family of control-field, and the error probability for each gate falls below the rough-and-ready estimate for the accuracy threshold of 10**(-4).
290 - Ran Li , Frank Gaitan 2011
We show how a robust high-fidelity universal set of quantum gates can be implemented using a single form of non-adiabatic rapid passage whose parameters are optimized to maximize gate fidelity and reward gate robustness. Each gate in the universal se t is found to operate with a fidelity F in the range 0.99988 < F < 0.99999, and to require control parameters with no more than 14-bit (1 part in 10,000) precision. Such precision is within reach of commercially available arbitrary waveform generators, so that an experimental study of this approach to high-fidelity universal quantum control appears feasible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا