ﻻ يوجد ملخص باللغة العربية
In complexity theory, there exists a famous unsolved problem whether NP can be P or not. In this paper, we discuss this aspect in SAT (satisfiability) problem, and it is shown that the SAT can be solved in plynomial time by means of quantum algorithm.
We present a quasipolynomial-time algorithm for solving the weak membership problem for the convex set of separable, i.e. non-entangled, bipartite density matrices. The algorithm decides whether a density matrix is separable or whether it is eps-away
Entanglement detection in high dimensional systems is a NP-hard problem since it is lacking an efficient way. Given a bipartite quantum state of interest free entanglement can be detected efficiently by the PPT-criterion (Peres-Horodecki criterion),
We study a delay-sensitive information flow problem where a source streams information to a sink over a directed graph G(V,E) at a fixed rate R possibly using multiple paths to minimize the maximum end-to-end delay, denoted as the Min-Max-Delay probl
The Systematic Normal Form (SysNF) is a canonical form of lattices introduced in [Eldar,Shor 16], in which the basis entries satisfy a certain co-primality condition. Using a smooth analysis of lattices by SysNF lattices we design a quantum algorithm
A boundary evolution Algorithm (BEA) is proposed by simultaneously taking into account the bottom and the high-level crossover and mutation, ie., the boundary of the hierarchical genetic algorithm. Operators and optimal individuals based on optional annealing are designed. Based on the numerou