ﻻ يوجد ملخص باللغة العربية
Collective interaction of light with an atomic gas can give rise to superradiant instabilities. We experimentally study the sudden build-up of a reverse light field in a laser-driven high-finesse ring cavity filled with ultracold thermal or condensed atoms. While superradiant Rayleigh scattering from atomic clouds is normally only observed at very low temperatures (i.e. well below $1 mu$K), the presence of the ring cavity enhances cooperativity and allows for superradiance with thermal clouds as hot as several $10 mu$K. A characterization of the superradiance at various temperatures and cooperativity parameters allows us to link it to the collective atomic recoil laser.
We achieve the strong coupling regime between an ensemble of phosphorus donor spins in a highly enriched $^{28}$Si crystal and a 3D dielectric resonator. Spins were polarized beyond Boltzmann equilibrium using spin selective optical excitation of the
We investigate the collective decay dynamics of atoms with a generic multilevel structure (angular momenta $Fleftrightarrow F$) coupled to two light modes of different polarization inside a cavity. In contrast to two-level atoms, we find that multile
We propose a novel type of composite light-matter interferometer based on a supersolid-like phase of a driven Bose-Einstein condensate coupled to a pair of degenerate counterpropagating electromagnetic modes of an optical ring cavity. The supersolid-
We theoretically analyze the collective dynamics of a thermal beam of atomic dipoles that couple to a single mode when traversing an optical cavity. For this setup we derive a semiclassical model and determine the onset of superradiant emission and i
We develop a quantum theory of atomic Rayleigh scattering. Scattering is considered as a relaxation of incident photons from a selected mode of free space to the reservoir of the other free space modes. Additional excitations of the reservoir states