ﻻ يوجد ملخص باللغة العربية
We propose an approach suitable for solving NP-complete problems via adiabatic quantum computation with an architecture based on a lattice of interacting spins (qubits) driven by locally adjustable effective magnetic fields. Interactions between qubits are assumed constant and instance-independent, programming is done only by changing local magnetic fields. Implementations using qubits coupled by magnetic-, electric-dipole and exchange interactions are discussed.
Incorporating protection against quantum errors into adiabatic quantum computing (AQC) is an important task due to the inevitable presence of decoherence. Here we investigate an error-protected encoding of the AQC Hamiltonian, where qubit ensembles a
We show how to perform universal Hamiltonian and adiabatic computing using a time-independent Hamiltonian on a 2D grid describing a system of hopping particles which string together and interact to perform the computation. In this construction, the m
The graph-theoretic Ramsey numbers are notoriously difficult to calculate. In fact, for the two-color Ramsey numbers $R(m,n)$ with $m,ngeq 3$, only nine are currently known. We present a quantum algorithm for the computation of the Ramsey numbers $R(
In the Graph Isomorphism problem two N-vertex graphs G and G are given and the task is to determine whether there exists a permutation of the vertices of G that preserves adjacency and transforms G into G. If yes, then G and G are said to be isomorph
We illustrate the adiabatic quantum computing solution of the knapsack problem with both integer profits and weights. For problems with $n$ objects (or items) and integer capacity $c$, we give specific examples using both an Ising class problem Hamil