ترغب بنشر مسار تعليمي؟ اضغط هنا

Concentration for unknown atomic entangled states via cavity decay

105   0   0.0 ( 0 )
 نشر من قبل Ming Yang
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as stationary qubit and photonic state as flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.



قيم البحث

اقرأ أيضاً

We propose a scheme to teleport an entangled state of two $Lambda$-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection un til quantum information transfer is successful. We also show how to manipulate a state of many $Lambda$-type atoms trapped in a cavity.
We propose a modified protocol of atomic state teleportation for the scheme proposed by Bose et al. (Phys. Rev. Lett. 83, 5158 (1999)). The modified protocol involves an additional stage in which quantum information distorted during the first stage i s fully recovered by a compensation of the damping factor. The modification makes it possible to obtain a high fidelity of teleported state for cavities that are much worse than that required in the original protocol, i.e., their decay rates can be over 25 times larger. The improvement in the fidelity is possible at the expense of lowering the probability of success. We show that the modified protocol is robust against dark counts.
In this paper we propose a scheme for partially teleporting entangled atomic states. Our scheme can be implemented using only four two-level atoms interacting either resonantly or off-resonantly with a single cavity-QED. The estimative of losses occu rring during this partial teleportation process is accomplished through the phenomenological operator approach technique.
126 - J. Busch , S. De , S. S. Ivanov 2011
Generating entanglement by simply cooling a system into a stationary state which is highly entangled has many advantages. Schemes based on this idea are robust against parameter fluctuations, tolerate relatively large spontaneous decay rates, and ach ieve high fidelities independent of their initial state. A possible implementation of this idea in atom-cavity systems has recently been proposed by Kastoryano et al. [Phys. Rev. Lett. 106, 090502 (2011)]. Here we propose an improved entanglement cooling scheme for two atoms inside an optical cavity which achieves higher fidelities for comparable single-atom cooperativity parameters C. For example, we predict fidelities above 90% even for C as low as 20 without requiring individual laser addressing and without having to detect photons.
It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coup ling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave states when the interactions between superconducting qubits and microwave fields are in the ultrastrong regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا