ﻻ يوجد ملخص باللغة العربية
The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant
The equivalence between the instructions used to define programs and the input data on which the instructions operate is a basic principle of classical computer architectures and programming. Replacing classical data with quantum states enables funda
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would e
This paper describes a novel approach to emulate a universal quantum computer with a wholly classical system, one that uses a signal of bounded duration and amplitude to represent an arbitrary quantum state. The signal may be of any modality (e.g. ac
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an ex