ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing a Quantum Computer

80   0   0.0 ( 0 )
 نشر من قبل Jacob Biamonte
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of quantum test is formally addressed. The presented method attempts the quantum role of classical test generation and test set reduction methods known from standard binary and analog circuits. QuFault, the authors software package generates test plans for arbitrary quantum circuits using the very efficient simulator QuIDDPro[1]. The quantum fault table is introduced and mathematically formalized, and the test generation method explained.



قيم البحث

اقرأ أيضاً

We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant because they are the first to have time-complexities that are comparable to the best known methods for simulating time-independent Hamiltonian evolution, given appropriate smoothness criteria on the Hamiltonian are satisfied. We provide a thorough cost analysis of these algorithms that considers discretizion errors in both the time and the representation of the Hamiltonian. In addition, we provide the first upper bounds for the error in Lie-Trotter-Suzuki approximations to unitary evolution operators, that use adaptively chosen time steps.
The equivalence between the instructions used to define programs and the input data on which the instructions operate is a basic principle of classical computer architectures and programming. Replacing classical data with quantum states enables funda mentally new computational capabilities with scaling advantages for many applications, and numerous models have been proposed for realizing quantum computation. However, within each of these models, the quantum data are transformed by a set of gates that are compiled using solely classical information. Conventional quantum computing models thus break the instruction-data symmetry: classical instructions and quantum data are not directly interchangeable. In this work, we use a density matrix exponentiation protocol to execute quantum instructions on quantum data. In this approach, a fixed sequence of classically-defined gates performs an operation that uniquely depends on an auxiliary quantum instruction state. Our demonstration relies on a 99.7% fidelity controlled-phase gate implemented using two tunable superconducting transmon qubits, which enables an algorithmic fidelity surpassing 90% at circuit depths exceeding 70. The utilization of quantum instructions obviates the need for costly tomographic state reconstruction and recompilation, thereby enabling exponential speedup for a broad range of algorithms, including quantum principal component analysis, the measurement of entanglement spectra, and universal quantum emulation.
260 - Jose Luis Rosales 2015
Modern cryptography is largely based on complexity assumptions, for example, the ubiquitous RSA is based on the supposed complexity of the prime factorization problem. Thus, it is of fundamental importance to understand how a quantum computer would e ventually weaken these algorithms. In this paper, one follows Feynmans prescription for a computer to simulate the physics corresponding to the algorithm of factoring a large number $N$ into primes. Using Dirac-Jordan transformation theory one translates factorization into the language of quantum hermitical operators, acting on the vectors of the Hilbert space. This leads to obtaining the ensemble of factorization of $N$ in terms of the Euler function $varphi(N)$, that is quantized. On the other hand, considering $N$ as a parameter of the computer, a Quantum Mechanical Prime Counting Function $pi_{QM}(x)$, where $x$ factorizes $N$, is derived. This function converges to $pi(x)$ when $Ngg x$. It has no counterpart in analytic number theory and its derivation relies on semiclassical quantization alone.
This paper describes a novel approach to emulate a universal quantum computer with a wholly classical system, one that uses a signal of bounded duration and amplitude to represent an arbitrary quantum state. The signal may be of any modality (e.g. ac oustic, electromagnetic, etc.) but this paper will focus on electronic signals. Individual qubits are represented by in-phase and quadrature sinusoidal signals, while unitary gate operations are performed using simple analog electronic circuit devices. In this manner, the Hilbert space structure of a multi-qubit quantum state, as well as a universal set of gate operations, may be fully emulated classically. Results from a programmable prototype system are presented and discussed.
For variational algorithms on the near term quantum computing hardware, it is highly desirable to use very accurate ansatze with low implementation cost. Recent studies have shown that the antisymmetrized geminal power (AGP) wavefunction can be an ex cellent starting point for ansatze describing systems with strong pairing correlations, as those occurring in superconductors. In this work, we show how AGP can be efficiently implemented on a quantum computer with circuit depth, number of CNOTs, and number of measurements being linear in system size. Using AGP as the initial reference, we propose and implement a unitary correlator on AGP and benchmark it on the ground state of the pairing Hamiltonian. The results show highly accurate ground state energies in all correlation regimes of this model Hamiltonian.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا