ﻻ يوجد ملخص باللغة العربية
Purification of mixed states in Quantum Mechanics, by which we mean the transformation into pure states, has been viewed as an {it Operation} in the sense of Kraus et al and explicit {it Kraus Operators} cite{kra1,kra2,kra3} have been constructed for two seperate purification protocols. The first one, initially due to Schrodinger cite{sch} and subsequently elaborated by Sudarshan et al cite{sudar}, is based on the {it preservation of probabilities}. We have constructed a second protocol here based on {it optimization of fidelities}. Both purification protocols have been implemented on a single qubit in an attempt to improve the fidelity of the purified post measurement state of the qubit with the initial pure state. We have considered both {it complete} and {it partial} measurements and have established bounds and inequalities for various fidelities. We show that our purification protocol leads to better state reconstruction, most explicitly so, when partial measurements are made.
We report the experimental realization of the purification protocol for single qubits sent through a depolarization channel. The qubits are associated with polarization encoded photon particles and the protocol is achieved by means of passive linear
We propose an entanglement purification scheme based on material qubits and ancillary coherent multiphoton states. We consider a typical QED scenario where material qubits implemented by two-level atoms fly sequentially through a cavity and interact
We demonstrate and evaluate an on-demand source of single itinerant microwave photons. Photons are generated using a highly coherent, fixed-frequency qubit-cavity system, and a protocol where the microwave control field is far detuned from the photon
Single photon emitters are indispensable to photonic quantum technologies. Here we demonstrate waveform-controlled high-purity single photons from room-temperature colloidal quantum dots. The purity of the single photons does not vary with the excita
Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designed a multiplexed measurement system with a bandpass filter that al