ﻻ يوجد ملخص باللغة العربية
A single 40Ca+ ion is trapped and laser cooled to its motional ground state. Laser radiation which couples off-resonantly to a motional sideband of the ions S1/2 to D5/2 transition causes a phase shift proportional to the ions motional quantum state |n>. As the phase shift is conditional upon the ions motion, we are able to demonstrate a universal 2-qubit quantum gate operation where the electronic target state {S,D} is flipped depending on the motional qubit state |n>={|0>,|1>}. Finally, we discuss scaling properties of this universal quantum gate for linear ion crystals and present numerical simulations for the generation of a maximally entangled state of five ions.
We construct a Universal Quantum Entanglement Concentration Gate (QEC-Gate). Special times operations of QEC-Gate can transform a pure 2-level bipartite entangled state to nearly maximum entanglement. The transformation can attain any required fideli
Quantum logic gates must perform properly when operating on their standard input basis states, as well as when operating on complex superpositions of these states. Experiments using superconducting qubits have validated the truth table for particular
Blind quantum computation (BQC) allows that a client who has limited quantum abilities can delegate quantum computation to a server who has advanced quantum technologies but learns nothing about the clients private information. For example, measureme
We report the realization of an elementary quantum processor based on a linear crystal of trapped ions. Each ion serves as a quantum bit (qubit) to store the quantum information in long lived electronic states. We present the realization of single-qu
Hybrid qubits have recently drawn intensive attention in quantum computing. We here propose a method to implement a universal controlled-phase gate of two hybrid qubits via two three-dimensional (3D) microwave cavities coupled to a superconducting fl