ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Kalman Filtering and the Heisenberg Limit in Atomic Magnetometry

66   0   0.0 ( 0 )
 نشر من قبل JM Geremia
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The shot-noise detection limit in current high-precision atomic magnetometry is a manifestation of quantum fluctuations that scale as the square root of N in an ensemble of N particles. However, there is a general expectation that the reduced projection noise provided by conditional spin-squeezing could be exploited to surpass the conventional shot-noise limit. We show that continuous measurement coupled with quantum Kalman filtering provides an optimal procedure for magnetic detection limits that scale with 1/N, the Heisenberg squeezing limit. Our analysis demonstrates the importance of optimal estimation procedures for high bandwidth precision magnetometry.



قيم البحث

اقرأ أيضاً

Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum adv antage to a constant factor. In frequency estimation scenarios, however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a constant, but this constant may be significantly improved by exploring the geometry.
We study causal waveform estimation (tracking) of time-varying signals in a paradigmatic atomic sensor, an alkali vapor monitored by Faraday rotation probing. We use Kalman filtering, which optimally tracks known linear Gaussian stochastic processes, to estimate stochastic input signals that we generate by optical pumping. Comparing the known input to the estimates, we confirm the accuracy of the atomic statistical model and the reliability of the Kalman filter, allowing recovery of waveform details far briefer than the sensors intrinsic time resolution. With proper filter choice, we obtain similar benefits when tracking partially-known and non-Gaussian signal processes, as are found in most practical sensing applications. The method evades the trade-off between sensitivity and time resolution in coherent sensing.
172 - Min Jiang , Wenjie Xu , Qing Li 2020
Atomic magnetometers are highly sensitive detectors of magnetic fields that monitor the evolution of the macroscopic magnetic moment of atomic vapors, and opening new applications in biological, physical, and chemical science. However, the performanc e of atomic magnetometers is often limited by hidden systematic effects that may cause misdiagnosis for a variety of applications, e.g., in NMR and in biomagnetism. In this work, we uncover a hitherto unexplained interference effect in atomic magnetometers, which causes an important systematic effect to greatly deteriorate the accuracy of measuring magnetic fields. We present a standard approach to detecting and characterizing the interference effect in, but not limited to, atomic magnetometers. As applications of our work, we consider the effect of the interference in NMR structural determination and locating the brain electrophysiological symptom, and show that it will help to improve the measurement accuracy by taking interference effects into account. Through our experiments, we indeed find good agreement between our prediction and the asymmetric amplitudes of resonant lines in ultralow-field NMR spectra -- an effect that has not been understood so far. We anticipate that our work will stimulate interesting new researches for magnetic interference phenomena in a wide range of magnetometers and their applications.
We provide efficient and intuitive tools for deriving bounds on achievable precision in quantum enhanced metrology based on the geometry of quantum channels and semi-definite programming. We show that when decoherence is taken into account, the maxim al possible quantum enhancement amounts generically to a constant factor rather than quadratic improvement. We apply these tools to derive bounds for models of decoherence relevant for metrological applications including: dephasing,depolarization, spontaneous emission and photon loss.
Sensing static or slowly varying magnetic fields with high sensitivity and spatial resolution is critical to many applications in fundamental physics, bioimaging and materials science. Several versatile magnetometry platforms have emerged over the pa st decade, such as electronic spins associated with Nitrogen Vacancy (NV) centers in diamond. However, their high sensitivity to external fields also makes them poor sensors of DC fields. Indeed, the usual method of Ramsey magnetometry leaves them prone to environmental noise, limiting the allowable interrogation time to the short dephasing time T2*. Here we introduce a hybridized magnetometery platform, consisting of a sensor and ancilla, that allows sensing static magnetic fields with interrogation times up to the much longer T2 coherence time, allowing significant potential gains in field sensitivity. While more generally applicable, we demonstrate the method for an electronic NV sensor and a nuclear ancilla. It relies on frequency upconversion of transverse DC fields through the ancilla, allowing quantum lock-in detection with low-frequency noise rejection. In our experiments, we demonstrate sensitivities better than 6uT/vHz, comparable to the Ramsey method, and narrow-band signal noise filtering better than 64kHz. With technical optimization, we expect more than an one order of magnitude improvement in each of these parameters. Since our method measures transverse fields, in combination with the Ramsey detection of longitudinal fields, it ushers in a compelling technique for sensitive vector DC magnetometry at the nanoscale.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا