The quadrupole S$_{1/2}$ -- D$_{5/2}$ optical transition of a single trapped Ca$^+$ ion, well suited for encoding a quantum bit of information, is coherently coupled to the standing wave field of a high finesse cavity. The coupling is verified by observing the ions response to both spatial and temporal variations of the intracavity field. We also achieve deterministic coupling of the cavity mode to the ions vibrational state by selectively exciting vibrational state-changing transitions and by controlling the position of the ion in the standing wave field with nanometer-precision.