ﻻ يوجد ملخص باللغة العربية
A new recursion procedure for deriving renormalized perturbation expansions for the one-dimensional anharmonic oscillator is offered. Based upon the $hbar$-expansions and suitable quantization conditions, the recursion formulae obtained have the same simple form both for ground and excited states and can be easily applied to any renormalization scheme. As an example, the renormalized expansions for the sextic anharmonic oscillator are considered.
A simple method for the calculation of higher orders of the logarithmic perturbation theory for bound states of the spherical anharmonic oscillator is developed. The structure of the perturbation series for energy eigenvalues of the sextic doubly anh
The explicit semiclassical treatment of the logarithmic perturbation theory for the bound-state problem for the spherical anharmonic oscillator is developed. Based upon the $hbar$-expansions and suitable quantization conditions a new procedure for de
It is shown that for the one-dimensional quantum anharmonic oscillator with potential $V(x)= x^2+g^2 x^4$ the Perturbation Theory (PT) in powers of $g^2$ (weak coupling regime) and the semiclassical expansion in powers of $hbar$ for energies coincide
This paper proposes a novel technique to prove a one-shot version of achievability results in network information theory. The technique is not based on covering and packing lemmas. In this technique, we use an stochastic encoder and decoder with a pa
In this paper we investigate the one-dimensional harmonic oscillator with a singular perturbation concentrated in one point. We describe all possible selfadjoint realizations and we show that for certain conditions on the perturbation exactly one neg