A Darboux-type method of solving the nonlinear von Neumann equation $idot rho=[H,f(rho)]$, with functions $f(rho)$ commuting with $rho$, is developed. The technique is based on a representation of the nonlinear equation by a compatibility condition for an overdetermined linear system. von Neumann equations with various nonlinearities $f(rho)$ are found to possess the so-called self-scattering solutions. To illustrate the result we consider the Hamiltonian $H$ of a one-dimensional harmonic oscillator and $f(rho)=rho^q-2rho^{q-1}$ with arbitary real $q$. It is shown that self-scattering solutions possess the same asymptotics for all $q$ and that different nonlinearities may lead to effectively indistinguishable evolutions. The result may have implications for nonextensive statistics and experimental tests of linearity of quantum mechanics.