ترغب بنشر مسار تعليمي؟ اضغط هنا

Flow correlated percolation during vascular network formation in tumors

99   0   0.0 ( 0 )
 نشر من قبل Heiko Rieger
 تاريخ النشر 2005
  مجال البحث علم الأحياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A theoretical model based on the molecular interactions between a growing tumor and a dynamically evolving blood vessel network describes the transformation of the regular vasculature in normal tissues into a highly inhomogeneous tumor specific capillary network. The emerging morphology, characterized by the compartmentalization of the tumor into several regions differing in vessel density, diameter and necrosis, is in accordance with experimental data for human melanoma. Vessel collapse due to a combination of severely reduced blood flow and solid stress exerted by the tumor, leads to a correlated percolation process that is driven towards criticality by the mechanism of hydrodynamic vessel stabilization.



قيم البحث

اقرأ أيضاً

275 - Hongyi Li 2020
Objective: Interstitial fluid flow through vascular adventitia has been disclosed recently. However, its kinetic pattern was unclear. Methods and Results: We used histological and topographical identifications to observe ISF flow along venous vessels in rabbits. By MRI in alive subjects, the inherent ISF flow pathways in legs, abdomen and thorax were enhanced by paramagnetic contrast from ankle dermis. By fluorescence stereomicroscopy and layer-by-layer dissection after the rabbits were sacrificed, the perivascular and adventitial connective tissues (PACT) along the saphenous veins and inferior vena cava were found to be stained by sodium fluorescein from ankle dermis, which coincided with the findings by MRI. By confocal microscopy and histological analysis, the stained PACT pathways were verified to be the fibrous connective tissues and consisted of longitudinally assembled fibers. By usages of nanoparticles and surfactants, a PACT pathway was found to be accessible for a nanoparticle under 100nm and contain two parts: a tunica channel part and an absorptive part. In real-time observations, the calculated velocity of a continuous ISF flow along fibers of a PACT pathway was 3.6-15.6 mm/sec. Conclusion: These data further revealed more kinetic features of a continuous ISF flow along vascular vessel. A multiscale, multilayer, and multiform interstitial/interfacial fluid flow throughout perivascular and adventitial connective tissues was suggested as one of kinetic and dynamic mechanisms for ISF flow, which might be another principal fluid dynamic pattern besides convective/vascular and diffusive transport in biological system.
237 - Raja Paul 2009
We study a simplified stochastic model for the vascularization of a growing tumor, incorporating the formation of new blood vessels at the tumor periphery as well as their regression in the tumor center. The resulting morphology of the tumor vasculat ure differs drastically from the original one. We demonstrate that the probabilistic vessel collapse has to be correlated with the blood shear force in order to yield percolating network structures. The resulting tumor vasculature displays fractal properties. Fractal dimension, microvascular density (MVD), blood flow and shear force has been computed for a wide range of parameters.
Within developing embryos, tissues flow and reorganize dramatically on timescales as short as minutes. This includes epithelial tissues, which often narrow and elongate in convergent extension movements due to anisotropies in external forces or in in ternal cell-generated forces. However, the mechanisms that allow or prevent tissue reorganization, especially in the presence of strongly anisotropic forces, remain unclear. We study this question in the converging and extending Drosophila germband epithelium, which displays planar polarized myosin II and experiences anisotropic forces from neighboring tissues, and we show that in contrast to isotropic tissues, cell shape alone is not sufficient to predict the onset of rapid cell rearrangement. From theoretical considerations and vertex model simulations, we predict that in anisotropic tissues two experimentally accessible metrics of cell patterns, the cell shape index and a cell alignment index, are required to determine whether an anisotropic tissue is in a solid-like or fluid-like state. We show that changes in cell shape and alignment over time in the Drosophila germband predict the onset of rapid cell rearrangement in both wild-type and snail twist mutant embryos, where our theoretical prediction is further improved when we also account for cell packing disorder. These findings suggest that convergent extension is associated with a transition to more fluid-like tissue behavior, which may help accommodate tissue shape changes during rapid developmental events.
Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells motion is governed by the g radient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا