ﻻ يوجد ملخص باللغة العربية
We analyze the dynamics of the neural circuit of the lamprey central pattern generator (CPG). This analysis provides insights into how neural interactions form oscillators and enable spontaneous oscillations in a network of damped oscillators, which were not apparent in previous simulations or abstract phase oscillator models. We also show how the different behaviour regimes (characterized by phase and amplitude relationships between oscillators) of forward/backward swimming, and turning, can be controlled using the neural connection strengths and external inputs.
In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of the neural activity, as expected, but it can also promote neural reacti
The models in statistical physics such as an Ising model offer a convenient way to characterize stationary activity of neural populations. Such stationary activity of neurons may be expected for recordings from in vitro slices or anesthetized animals
Neural noise sets a limit to information transmission in sensory systems. In several areas, the spiking response (to a repeated stimulus) has shown a higher degree of regularity than predicted by a Poisson process. However, a simple model to explain
It is shown that, contrary to the claims in a recent letter by Haldeman and Beggs (PRL, 94, 058101, 2005), the branching ratio in epileptic cortical cultures is smaller than one. In addition, and also in contrast to claims made in that paper, the num
Recently Segev et al. (Phys. Rev. E 64,2001, Phys.Rev.Let. 88, 2002) made long-term observations of spontaneous activity of in-vitro cortical networks, which differ from predictions of current models in many features. In this paper we generalize the