ﻻ يوجد ملخص باللغة العربية
The wide band of frequencies that includes all those allocated to 2G/3G applications was defined as 2G/3G band and the discone antenna with a structure of radial wires was defined as radial discone. This antenna was theoretically analysed and software simulated with the purpose of computationally design a broadband model of it. As an application, a radial discone for operation from 800 to 3000 MHz, which include the 2G/3G band, was designed and an experimental model was built and tested. Mathematically expressed measurement error bounds were computed in order to evaluate the agreement between theory and practice.
The objective was to study uncertainty in antenna input impedance resulting from full one-port Vector Network Analyzer (VNA) measurements. The VNA process equation in the reflection coefficient p of a load, its measurement m and three errors Es -dete
An analytical method was developed, to estimate uncertainties in full two-port Vector Network Analyzer measurements, using total differentials of S-parameters. System error uncertainties were also estimated from total differentials involving two trip
We apply the transformation-optics approach to the design of a metamaterial radome that can extend the scanning angle of a phased-array antenna. For moderate enhancement of the scanning angle, via suitable parameterization and optimization of the coo
Considerable time is often spent optimizing antennas to meet specific design metrics. Rarely, however, are the resulting antenna designs compared to rigorous physical bounds on those metrics. Here we study the performance of optimized planar meander
We present a gradient-based optimization strategy to design broadband grating couplers. Using this method, we are able to reach, and often surpass, a user-specified target bandwidth during optimization. The designs produced for 220 nm silicon-on-insu