ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple time scales and the empirical models for stochastic volatility

249   0   0.0 ( 0 )
 نشر من قبل Gennady Buchbinder
 تاريخ النشر 2006
  مجال البحث فيزياء مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

The most common stochastic volatility models such as the Ornstein-Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull-White models define volatility as a Markovian process. In this work we check of the applicability of the Markovian approximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months)time scales as a Markovian process and estimate for it the coefficients of the Kramers-Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non zero that define form of the volatility stochastic differential equation of Ito. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.



قيم البحث

اقرأ أيضاً

78 - Xiuqin Xu , Ying Chen 2021
Volatility for financial assets returns can be used to gauge the risk for financial market. We propose a deep stochastic volatility model (DSVM) based on the framework of deep latent variable models. It uses flexible deep learning models to automatic ally detect the dependence of the future volatility on past returns, past volatilities and the stochastic noise, and thus provides a flexible volatility model without the need to manually select features. We develop a scalable inference and learning algorithm based on variational inference. In real data analysis, the DSVM outperforms several popular alternative volatility models. In addition, the predicted volatility of the DSVM provides a more reliable risk measure that can better reflex the risk in the financial market, reaching more quickly to a higher level when the market becomes more risky and to a lower level when the market is more stable, compared with the commonly used GARCH type model with a huge data set on the U.S. stock market.
Agents heterogeneity is recognized as a driver mechanism for the persistence of financial volatility. We focus on the multiplicity of investment strategies horizons, we embed this concept in a continuous time stochastic volatility framework and prove that a parsimonious, two-scale version effectively captures the long memory as measured from the real data. Since estimating parameters in a stochastic volatility model is challenging, we introduce a robust methodology based on the Generalized Method of Moments supported by a heuristic selection of the orthogonal conditions. In addition to the volatility clustering, the estimated model also captures other relevant stylized facts, emerging as a minimal but realistic and complete framework for modelling financial time series.
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of s tock returns are asymmetric functions of past information. We compare the results for the Portuguese Stock Market Index PSI 20 with six other Stock Market Indices, namely the S&P 500, FTSE100, DAX 30, CAC 40, ASE 20, and IBEX 35. In order to assess asymmetric volatility we use autoregressive conditional heteroskedasticity specifications known as TARCH and EGARCH. We also test for asymmetry after controlling for the effect of macroeconomic factors on stock market returns using TAR and M-TAR specifications within a VAR framework. Our results show that the conditional variance is an asymmetric function of past innovations raising proportionately more during market declines, a phenomenon known as the leverage effect. However, when we control for the effect of changes in macroeconomic variables, we find no significant evidence of asymmetric behaviour of the stock market returns. There are some signs that the Portuguese Stock Market tends to show somewhat less market efficiency than other markets since the effect of the shocks appear to take a longer time to dissipate.
We study the return interval $tau$ between price volatilities that are above a certain threshold $q$ for 31 intraday datasets, including the Standard & Poors 500 index and the 30 stocks that form the Dow Jones Industrial index. For different threshol d $q$, the probability density function $P_q(tau)$ scales with the mean interval $bar{tau}$ as $P_q(tau)={bar{tau}}^{-1}f(tau/bar{tau})$, similar to that found in daily volatilities. Since the intraday records have significantly more data points compared to the daily records, we could probe for much higher thresholds $q$ and still obtain good statistics. We find that the scaling function $f(x)$ is consistent for all 31 intraday datasets in various time resolutions, and the function is well approximated by the stretched exponential, $f(x)sim e^{-a x^gamma}$, with $gamma=0.38pm 0.05$ and $a=3.9pm 0.5$, which indicates the existence of correlations. We analyze the conditional probability distribution $P_q(tau|tau_0)$ for $tau$ following a certain interval $tau_0$, and find $P_q(tau|tau_0)$ depends on $tau_0$, which demonstrates memory in intraday return intervals. Also, we find that the mean conditional interval $<tau|tau_0>$ increases with $tau_0$, consistent with the memory found for $P_q(tau|tau_0)$. Moreover, we find that return interval records have long term correlations with correlation exponents similar to that of volatility records.
We study the long-term memory in diverse stock market indices and foreign exchange rates using the Detrended Fluctuation Analysis(DFA). For all daily and high-frequency market data studied, no significant long-term memory property is detected in the return series, while a strong long-term memory property is found in the volatility time series. The possible causes of the long-term memory property are investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, and the GARCH(1,1) model, reflecting the volatility clustering property, respectively. Notably, we found that the memory effect in the AR(1) filtered return and volatility time series remains unchanged, while the long-term memory property either disappeared or diminished significantly in the volatility series of the GARCH(1,1) filtered data. We also found that in the high-frequency data the long-term memory property may be generated by the volatility clustering as well as higher autocorrelation. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا