ﻻ يوجد ملخص باللغة العربية
The most common stochastic volatility models such as the Ornstein-Uhlenbeck (OU), the Heston, the exponential OU (ExpOU) and Hull-White models define volatility as a Markovian process. In this work we check of the applicability of the Markovian approximation at separate times scales and will try to answer the question which of the stochastic volatility models indicated above is the most realistic. To this end we consider the volatility at both short (a few days) and long (a few months)time scales as a Markovian process and estimate for it the coefficients of the Kramers-Moyal expansion using the data for Dow-Jones Index. It has been found that the empirical data allow to take only the first two coefficients of expansion to be non zero that define form of the volatility stochastic differential equation of Ito. It proved to be that for the long time scale the empirical data support the ExpOU model. At the short time scale the empirical model coincides with ExpOU model for the small volatility quantities only.
Volatility for financial assets returns can be used to gauge the risk for financial market. We propose a deep stochastic volatility model (DSVM) based on the framework of deep latent variable models. It uses flexible deep learning models to automatic
Agents heterogeneity is recognized as a driver mechanism for the persistence of financial volatility. We focus on the multiplicity of investment strategies horizons, we embed this concept in a continuous time stochastic volatility framework and prove
Recent studies show that a negative shock in stock prices will generate more volatility than a positive shock of similar magnitude. The aim of this paper is to appraise the hypothesis under which the conditional mean and the conditional variance of s
We study the return interval $tau$ between price volatilities that are above a certain threshold $q$ for 31 intraday datasets, including the Standard & Poors 500 index and the 30 stocks that form the Dow Jones Industrial index. For different threshol
We study the long-term memory in diverse stock market indices and foreign exchange rates using the Detrended Fluctuation Analysis(DFA). For all daily and high-frequency market data studied, no significant long-term memory property is detected in the