ﻻ يوجد ملخص باللغة العربية
Using transmission electron microscopy (TEM) to analyse the physical-chemical surface properties of subwavlength structured silver films and finite-difference time-domain (FDTD) numerical simulations of the optical response of these structures to plane-wave excitation, we report on the origin and nature of the persistent surface waves generated by a single slit-groove motif and recently measured by far-field optical interferometry. The surface analysis shows that the silver films are free of detectable oxide or sulfide contaminants, and the numerical simulations show very good agreement with the results previously reported.
Micro-sized spheres can focus light into subwavelength spatial domains: a phenomena called photonic nanojet. Even though well studied in three-dimensional (3D) configurations, only a few attempts have been reported to observe similar phenomena in two
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6
We apply the technique of far-field interferometry to measure the properties of surface waves generated by two-dimensional (2D) single subwavelength slit-groove structures on gold films. The effective surface index of refraction measured for the surf
We detect thermally excited surfaces waves on a submicron SiO 2 layer, including Zenneck and guided modes in addition to Surface Phonon Polaritons. The measurements show the existence of these hybrid thermal-electromagnetic waves from near-(2.7 $mu$m
Inspired by the capability of structured illumination microscopy in subwavelength imaging, many researchers devoted themselves to investigating this methodology. However, due to the free propagating feature of the traditional structured illumination