ترغب بنشر مسار تعليمي؟ اضغط هنا

Interference of diffraction and transition radiation and its application as a beam divergence diagnostic

134   0   0.0 ( 0 )
 نشر من قبل Ralph B. Fiorito
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed the interference of optical diffraction radiation (ODR) and optical transition radiation (OTR) produced by the interaction of a relativistic electron beam with a micromesh foil and a mirror. The production of forward directed ODR from electrons passing through the holes and wires of the mesh and their separate interactions with backward OTR from the mirror are analyzed with the help of a simulation code. By careful choice of the micromesh properties, mesh-mirror spacing, observation wavelength and filter band pass, the interference of the ODR produced from the unperturbed electrons passing through the open spaces of the mesh and OTR from the mirror are observable above a broad incoherent background from interaction of the heavily scattered electrons passing through the mesh wires. These interferences (ODTRI) are sensitive to the beam divergence and can be used to directly diagnose this parameter. We compare experimental divergence values obtained using ODTRI, conventional OTRI, for the case when front foil scattering is negligible, and computed values obtained from transport code calculations and multiple screen beam size measurements. We obtain good agreement in all cases.



قيم البحث

اقرأ أيضاً

High brightness electron accelerators, such as energy recovery linacs (ERL), often have complex particle distributions that can create difficulties in beam transport as well as matching to devices such as wigglers used to generate radiation from the beam. Optical transition radiation (OTR), OTR interferometry (OTRI) and optical diffraction-transition radiation interferometry (ODTRI) have proven to be effective tools for diagnosing both the spatial and angular distributions of charged particle beams. OTRI and ODTRI have been used to measure rms divergences and optical transverse phase space mapping has been demonstrated using OTRI. In this work we present the results of diagnostic experiments using OTR and ODR conducted at the Jefferson Laboratory 115 MeV ERL which show the presence of two separate components within the spatial and angular distributions of the beam. By assuming a correlation between the spatial and angular features we estimate an rms emittance value for each of the two components.
In this paper we compare experimental observations and theory of radiation emission from a microbunched beam with microbunching wavefront tilt with respect to the direction of motion. The theory refers to the work [1], which predicts, in this case, e xponential suppression of coherent radiation along the kicked direction. The observations refer to a recent experiment performed at the LCLS [2,3], where a microbunched beam was kicked by a bend and sent to a radiator undulator. The experiment resulted in the emission of strong coherent radiation that had its maximum along the kicked direction of motion, when the undulator parameter was detuned to a value larger than the nominal one. We first analyze the theory in detail, and we confirm the correctness of its derivation according to the conventional theory of radiation emission from charged particles. Subsequently, we look for possible peculiarities in the experiment, which may not be modeled by the theory. We show that only spurious effects are not accounted for. We conclude that the experiment defies explanation in terms of the conventional theory of radiation emission.
With a low emittance and short-bunch electron beam at a high repetition rate realized by a superconducting linac, stimulated excitation of an optical cavity at the terahertz spectrum range has been shown. The electron beam passed through small holes in the cavity mirrors without being destroyed. A sharp resonance structure which indicated wide-band stimulated emission via coherent diffraction radiation was observed while scanning the round-trip length of the cavity.
198 - E.G.Bessonov 2010
We investigated the phenomena of self-stimulation of incoherent emission from an undulator installed in the linear accelerator or quasi-isochronous storage ring. We discuss possible applications of these phenomena for the beam physics also.
A high-precision intra-bunch-train beam orbit feedback correction system has been developed and tested in the ATF2 beamline of the Accelerator Test Facility at the High Energy Accelerator Research Organization in Japan. The system uses the vertical p osition of the bunch measured at two beam position monitors (BPMs) to calculate a pair of kicks which are applied to the next bunch using two upstream kickers, thereby correcting both the vertical position and trajectory angle. Using trains of two electron bunches separated in time by 187.6~ns, the system was optimised so as to stabilize the beam offset at the feedback BPMs to better than 350~nm, yielding a local trajectory angle correction to within 250~nrad. The quality of the correction was verified using three downstream witness BPMs and the results were found to be in agreement with the predictions of a linear lattice model used to propagate the beam trajectory from the feedback region. This same model predicts a corrected beam jitter of c.~1~nm at the focal point of the accelerator. Measurements with a beam size monitor at this location demonstrate that reducing the trajectory jitter of the beam by a factor of 4 also reduces the increase in the measured beam size as a function of beam charge by a factor of c.~1.6.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا