ﻻ يوجد ملخص باللغة العربية
Double-diffusive convection in a horizontally infinite layer of a unit height in a large Rayleigh numbers limit is considered. From linear stability analysis it is shown, that the convection tends to have a form of travelling tall thin rolls with height 10-30 times larger than width. Amplitude equations of ABC type for vertical variations of amplitude of these rolls and mean values of diffusive components are derived. As a result of its numerical simulation it is shown, that for a wide variety of parameters considered ABC system have solutions, known as diffusive chaos, which can be useful for explanation of fine structure generation in some important oceanographical systems like thermohaline staircases.
Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Has
Boundary layer turbulence in coastal regions differs from that in deep ocean because of bottom interactions. In this paper, we focus on the merging of surface and bottom boundary layers in a finite-depth coastal ocean by numerically solving the wave-
Environmental fluid mechanics underlies a wealth of natural, industrial and, by extension, societal challenges. In the coming decades, as we strive towards a more sustainable planet, there are a wide range of grand challenge problems that need to be
A parabolic equation for the propagation of periodic internal waves over varying bottom topography is derived using the multiple-scale perturbation method. Some computational aspects of the numerical implementation are discussed. The results of numer
The multifractal theory of turbulence is used to investigate the energy cascade in the Northwestern Atlantic ocean. The statistics of singularity exponents of velocity gradients computed from in situ measurements are used to show that the anomalous s