ترغب بنشر مسار تعليمي؟ اضغط هنا

An AC electric trap for ground-state molecules

81   0   0.0 ( 0 )
 نشر من قبل Hendrick Bethlem
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We here report on the realization of an electrodynamic trap, capable of trapping neutral atoms and molecules in both low-field and high-field seeking states. Confinement in three dimensions is achieved by switching between two electric field configurations that have a saddle-point at the center of the trap, i.e., by alternating a focusing and a defocusing force in each direction. AC trapping of 15ND3 molecules is experimentally demonstrated, and the stability of the trap is studied as a function of the switching frequency. A 1 mK sample of 15ND3 molecules in the high-field seeking component of the |J,K>=|1,1> level, the ground-state of para-ammonia, is trapped in a volume of about 1 mm^3.



قيم البحث

اقرأ أيضاً

The electric-field-dependent $g$ factor and the electron electric dipole moment (eEDM)-induced Stark splittings for the lowest rotational levels of $^{207,208}$PbF are calculated. Observed and calculated Zeeman shifts for $^{207}$PbF are found to be in very good agreement. It is shown that the $^{207}$PbF hyperfine sublevels provide a promising system for the eEDM search and related experiments.
We present an experimental realization of a moving magnetic trap decelerator, where paramagnetic particles entrained in a cold supersonic beam are decelerated in a co-moving magnetic trap. Our method allows for an efficient slowing of both paramagnet ic atoms and molecules to near stopping velocities. We show that under realistic conditions we will be able to trap and decelerate a large fraction of the initial supersonic beam. We present our first results on deceleration in a moving magnetic trap by bringing metastable neon atoms to near rest. Our estimated phase space volume occupied by decelerated particles at final velocity of 50 m/s shows an improvement of two orders of magnitude as compared to currently available deceleration techniques.
We report the results of our theoretical study and analysis of earlier experimental data for the g-factor tensor components of the ground $^2Pi_{1/2}$ state of free PbF radical. The values obtained both within the relativistic coupled-cluster method combined with the generalized relativistic effective core potential approach and with our fit of the experimental data from [R.J. Mawhorter, B.S. Murphy, A.L. Baum, T.J. Sears, T. Yang, P.M. Rupasinghe, C.P. McRaven, N.E. Shafer-Ray, L.D. Alphei, J.-U. Grabow, Phys. Rev. A 84, 022508 (2011); A. Baum, B.S. thesis, Pomona College, 2011]. The obtained results agree very well with each other but contradict the previous fit performed in the cited works. Our final prediction for g-factors is $G_{parallel}= 0.081(5)$, $G_{perp}=-0.27(1)$.
Carbon monoxide molecules in their electronic, vibrational, and rotational ground state are highly attractive for trapping experiments. The optical or ac electric traps that can be envisioned for these molecules will be very shallow, however, with de pths in the sub-milliKelvin range. Here we outline that the required samples of translationally cold CO (X$^1Sigma^+$, $v$=0, $N$=0) molecules can be produced after Stark deceleration of a beam of laser-prepared metastable CO (a$^3Pi_1$) molecules followed by optical transfer of the metastable species to the ground state emph{via} perturbed levels in the A$^1Pi$ state. The optical transfer scheme is experimentally demonstrated and the radiative lifetimes and the electric dipole moments of the intermediate levels are determined.
176 - D. Borsalino 2015
Heteronuclear alkali-metal dimers represent the class of molecules of choice for creating samples of ultracold molecules exhibiting an intrinsic large permanent electric dipole moment. Among them, the KCs molecule, with a permanent dipole moment of 1 .92~Debye still remains to be observed in ultracold conditions. Based on spectroscopic studies available in the literature completed by accurate quantum chemistry calculations, we propose several optical coherent schemes to create ultracold bosonic and fermionic KCs molecules in their absolute rovibrational ground level, starting from a weakly bound level of their electronic ground state manifold. The processes rely on the existence of convenient electronically excited states allowing an efficient stimulated Raman adiabatic transfer of the level population.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا