ﻻ يوجد ملخص باللغة العربية
As a consequence of motions driven by external forces, self-fields originate within an electron bunch, which are different from the static case. In the case of magnetic external forces acting on an ultrarelativistic beam, the longitudinal self-interactions are responsible for CSR (Coherent Synchrotron Radiation)-related phenomena, which have been studied extensively. On the other hand, transverse self-interactions are present too. At the time being, several existing theoretical analysis of transverse dynamics rely on the so-called cancellation effect, which has been around for more than ten years. In this paper we explain why in our view such an effect is not of practical nor of theoretical importance.
As a consequence of motions driven by external forces, self-fields (which are different from the static case) originate within an electron bunch. In the case of magnetic external forces acting on an ultrarelativistic beam, the longitudinal self-inter
The AWAKE experiment relies on the self-modulation instability of a long proton bunch to effectively drive wakefields and accelerate an electron bunch to GeV-level energies. During the first experimental run (2016-2018) the instability was made phase
We briefly compare in numerical simulations the relativistic ionization front and electron bunch seeding of the self-modulation of a relativistic proton bunch in plasma. When parameters are such that initial wakefields are equal with the two seeding
We present theoretical and numerical studies of longitudinal compression and transverse matching of electron bunch before injecting into the Laser-plasma Wake Field Accelerator (LWFA) foreseen at the ESCULAP project in ORSAY. Longitudinal compression
In this note an electron bunch compressor is proposed based on FEL type interaction of the electron bunch with far infrared (FIR) radiation. This mechanism maintains phase space density and thus requires a high quality electron beam to produce bunches of the length of a few ten micrometer.