ترغب بنشر مسار تعليمي؟ اضغط هنا

A straw drift chamber spectrometer for studies of rare kaon decays

75   0   0.0 ( 0 )
 نشر من قبل Karol Lang
 تاريخ النشر 2003
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the design, construction, readout, tests, and performance of planar drift chambers, based on 5 mm diameter copperized Mylar and Kapton straws, used in an experimental search for rare kaon decays. The experiment took place in the high-intensity neutral beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory, using a neutral beam stop, two analyzing dipoles, and redundant particle identification to remove backgrounds.



قيم البحث

اقرأ أيضاً

142 - M. Cortesi , J. Pereira , D. Bazin 2019
The performance of a novel tracking detector developed for the focal plane of the NSCL/FRIB S800 magnetic spectrometer is presented. The detector comprises a large-area drift chamber equipped with a hybrid Micro-Pattern Gaseous Detector (MPGD)-based readout. The latter consists of a position-sensitive Micromegas detector preceded by a two-layer M-THGEM multiplier as a pre-amplification stage. The signals from the Micromegas readout are processed by a data acquisition system based on the General Electronics for TPC (GET). The drift chamber has an effective area of around 60x30 cm^2, which matches to the very large acceptance of the S800 spectrometer. This work discusses in detail the results of performance evaluation tests carried out with a low-energy alpha-particles source and with high-energy heavy-ion beams with the detector installed at the S800 focal plane. In this latter case, the detector was irradiated with a 150 MeV/u 78Kr36+ beam as well as a heavy-ion fragmentation cocktail beam produced by the 78Kr36+ beam impinging on a thin beryllium target. Sub-millimeter position resolution is obtained in both dispersive and non-dispersive directions.
The Central Drift Chamber is a straw-tube wire chamber of cylindrical structure located surrounding the target inside the bore of the GlueX spectrometer solenoid. Its purpose is to detect and track charged particles with momenta as low as 0.25 GeV/c as well as to identify low-momentum protons via energy loss. The construction of the detector is described and its operation and calibration are discussed in detail. The design goal of 150 microns in position resolution has been reached.
A large-acceptance spectrometer, Neutral Kaon Spectrometer 2 (NKS2), was newly constructed to explore various photoproduction reactions in the gigaelectronvolt region at the Laboratory of Nuclear Science (LNS, currently ELPH), Tohoku University. The spectrometer consisted of a dipole magnet, drift chambers, and plastic scintillation counters. NKS2 was designed to separate pions and protons in a momentum range of less than 1 GeV/$c$, and was placed in a tagged photon beamline. A cryogenic H$_{2}$/D$_{2}$ target fitted to the spectrometer were designed. The design and performance of the detectors are described. The results of the NKS2 experiment on analyzing strangeness photoproduction data using a 0.8--1.1 GeV tagged photon beam are also presented.
The MEG-II experiment searches for the lepton flavor violating decay: mu in electron and gamma. The reconstruction of the positron trajectory uses a cylindrical drift chamber operated with a mixture of He and iC4H10 gas. It is important to provide a stable performance of the detector in terms of its electron transport parameters, avalanche multiplication, composition and purity of the gas mixture. In order to have a continuous monitoring of the quality of gas, we plan to install a small drift chamber, with a simple geometry that allows to measure very precisely the electron drift velocity in a prompt way. This monitoring chamber will be supplied with gas coming from the inlet and the outlet of the detector to determine if gas contaminations originate inside the main chamber or in the gas supply system. The chamber is a small box with cathode walls, that define a highly uniform electric field inside two adjacent drift cells. Along the axis separating the two drift cells, four staggered sense wires alternated with five guard wires collect the drifting electrons. The trigger is provided by two 90Sr weak calibration radioactive sources placed on top of a two thin scintillator tiles telescope. The whole system is designed to give a prompt response (within a minute) about drift velocity variations at the 0.001 level.
105 - C. Wu , T.S. Wong , Y. Kuno 2021
The performance of a small prototype of a cylindrical drift chamber (CDC) used in the COMET Phase-I experiment was studied by using an electron beam. The prototype chamber was constructed with alternating all-stereo wire configuration and operated wi th the He-iC$_{4}$H$_{10}$ (90/10) gas mixture without a magnetic field. The drift space-time relation, drift velocity, d$E$/d$x$ resolution, hit efficiency, and spatial resolution as a function of distance from the wire were investigated. The average spatial resolution of 150 $mu$m with the hit efficiency of 99% was obtained at applied voltages higher than 1800 V. We have demonstrated that the design and gas mixture of the prototype match the operation of the COMET CDC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا