ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of the triple-GEM detector with optimized 2-D readout in high intensity hadron beam

73   0   0.0 ( 0 )
 نشر من قبل Lev I. Shekhtman
 تاريخ النشر 2001
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multiple-GEM detectors are considered to be good candidates for tracking devices in experiments with high hadronic background. We present the results of the triple-GEM detectors beam test in a high intensity pion beam. The detectors had an optimized two-dimensional readout with minimized strip capacitance. Such optimization permitted the starting point of the efficiency plateau down to a gain of 5000. The probability of GEM discharges induced by heavily ionizing particles has been measured as a function of gain: at a gain of 20000 it amounts to 10^(-11) per incident particle. Such a value will ensure safe operation of the detector in the conditions of forward region of the LHC experiments.



قيم البحث

اقرأ أيضاً

Optical readout of GEM based devices by means of high granularity and low noise CMOS sensors allows to obtain very interesting tracking performance. Space resolution of the order of tens of $mu$m were measured on the GEM plane along with an energy re solution of 20%$div$30%. The main limitation of CMOS sensors is represented by their poor information about time structure of the event. In this paper, the use of a concurrent light readout by means of a suitable photomultiplier and the acquisition of the electric signal induced on the GEM electrode are exploited to provide the necessary timing informations. The analysis of the PMT waveform allows a 3D reconstruction of each single clusters with a resolution on z of 100 $mu$m. Moreover, from the PMT signals it is possible to obtain a fast reconstruction of the energy released within the detector with a resolution of the order of 25% even in the tens of keV range useful, for example, for triggering purpose.
Gaseous detectors are used in high energy physics as trackers or, more generally, as devices for the measurement of the particle position. For this reason, they must provide high spatial resolution and they have to be able to operate in regions of in tense radiation, i.e. around the interaction point of collider machines. Among these, Micro Pattern Gaseous Detectors (MPGD) are the latest frontier and allow to overcome many limitations of the pre-existing detectors, such as the radiation tolerance and the rate capability. The gas Electron Multiplier (GEM) is a MPGD that exploits an intense electric field in a reduced amplification region in order to prevent discharges. Several amplification stages, like in a triple-GEM, allow to increase the detector gain and to reduce the discharge probability. Reconstruction techniques such as charge centroid (CC) and micro-Time Projection Chamber ($upmu$TPC) are used to perform the position measurement. From literature triple-GEMs show a stable behaviour up to $10^8,$Hz/cm$^2$. A testbeam with four planar triple-GEMs has been performed at the Mainz Microtron (MAMI) facility and their performance was evaluated in different beam conditions. In this article a focus on the time performance for the $upmu$TPC clusterization is given and a new measurement of the triple-GEM limits at high rate will be presented.
94 - Riccardo Farinelli 2019
The third generation of the Beijing Electron Spectrometer, BESIII, is an apparatus for high energy physics research. The hunting of new particles and the measurement of their properties or the research of rare processes are sought to understand if th e measurements confirm the Standard Model and to look for physics beyond it. The detectors ensure the reconstruction of events belonging to the sub-atomic domain. The operation and the efficiency of the BESIII inner tracker is compromised due to the the radiation level of the apparatus. A new detector is needed to guarantee better performance and to improve the physics research. A cylindrical triple-GEM detector (CGEM) is an answer to this need: it will maintain the excellent performance of the inner tracker while improving the spatial resolution in the beam direction allowing a better reconstruction of secondary vertices. The technological challenge of the CGEM is related in its spatial limitation and the needed cylindrical shape. At the same time the detector has to ensure an efficiency close to 1 and a stable spatial resolution better than 150 $mu$m, independently from the track incident angle and the presence of 1 T magnetic field. In the years 2014-2018 the CGEM-IT has been designed and built. Through several test beam and simulations the optimal configuration from the geometrical and electrical points of view has been found. This allows to measure the position of the charged particle interacting with the CGEM-IT. Two algorithms have been used for this purpose, the charge centroid and the $mu$TPC, a new technique introduced by ATLAS in MicroMegas and developed here for the first time for triple-GEM detector. A complete triple-GEM simulation software has been developed to improve the knowledge of the detection processes. The software reproduces the CGEM-IT behavior in the BESIII offline software.
The Phase-II high luminosity upgrade to the Large Hadron Collider (LHC) is planned for 2023, significantly increasing the collision rate and therefore the background rate, particularly in the high $eta$ region. To improve both the tracking and trigge ring of muons, the Compact Muon Solenoid (CMS) Collaboration plans to install triple-layer Gas Electron Multiplier (GEM) detectors in the CMS muon endcaps. Demonstrator GEM detectors were installed in CMS during 2017 to gain operational experience and perform a preliminary investigation of detector performance. We present the results of triple-GEM detector performance studies performed in situ during normal CMS and LHC operations in 2018. The distribution of cluster size and the efficiency to reconstruct high $p_T$ muons in proton--proton collisions are presented as well as the measurement of the environmental background rate to produce hits in the GEM detector.
Performance of triple GEM prototypes in strong magnetic field has been evaluated bymeans of a muon beam at the H4 line of the SPS test area at CERN. Data have been reconstructedand analyzed offline with two reconstruction methods: the charge centroid and the micro-Time-Projection-Chamber exploiting the charge and the time measurement respectively. A combinationof the two reconstruction methods is capable to guarantee a spatial resolution better than 150{mu}min magnetic field up to a 1 T.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا