ﻻ يوجد ملخص باللغة العربية
The absorption of pi^+ on ^3He in the $Delta$-region is evaluated with exact inclusion of the final state interaction among the three emerging protons. The absorption is described by a $pi N to Delta$ vertex and a $NDelta - NN$ transition t-matrix which are calculated from a phenomenological model for NN and pi d reactions. In a calculation where the initial pion scattering effects are neglected, the predicted peaks of the pion absorption cross sections for ^2H and ^3He lie too high in energy in relation to the data. The effect of the final state three-nucleon interaction turns out to be too small for changing the magnitude and shifting the peak position of the total absorption cross section for ^3He. We demonstrate that the adjustment of the peak position for the deuteron cross section by small modifications of the $Delta$-parameters, automatically leads to the correct peak position in ^3He.
In a kinematically complete experiment at the Mainz microtron MAMI, pion angular distributions of the $^3$He(e,e$pi^+)^3$H reaction have been measured in the excitation region of the $Delta$ resonance to determine the longitudinal ($L$), transverse (
The 3He transverse electron scattering response function R_T(q,omega) is calculated in the quasi-elastic peak region and beyond for momentum transfers q = 500, 600 and 700 MeV/c. Distinct from our previous work for these kinematics where we included
The recently derived long-range two-pion exchange (TPE) contributions to the nuclear current operator which appear at next-to-leading order (NLO) of the chiral expansion are used to describe electromagnetic processes. We study their role in the photo
Mechanisms of the charge exchange reaction $dpto {pp}_{!s} Npi$, where ${pp}_{!s}$ is a two-proton system at low excitation energy, are studied at beam energies 1 -- 2 GeV and for invariant masses $M_X$ of the final $Npi $ system that correspond to t
The neutrino-nucleon --> lepton pion QE reaction on the A-target is used as a signal event or/and to reconstruct the neutrino energy, using two-body kinematics. Competition of another processes could lead to misidentification of the arriving neutrino