ﻻ يوجد ملخص باللغة العربية
It is increasingly important to understand, in detail, two-pion correlations measured in p+p and d+A collisions. In particular, one wishes to understand the femtoscopic correlations, in order to compare to similar measurements in heavy ion collisions. However, in the low-multiplicity final states of these systems, global conservation laws generate significant N-body correlations which project onto the two-pion space in non-trivial ways and complicate the femtoscopic analysis. We discuss a model-independent formalism to calculate and account for these correlations in measurements.
It is important to understand, in detail, two-pion correlations measured in p+p and d+A collisions. In particular, one wishes to understand the femtoscopic correlations, in order to compare to similar measurements in heavy ion collisions. However, in
The basic principles of the correlation femtoscopy, including its correspondence to the Hanbury Brown and Twiss intensity interferometry, are re-examined. The main subject of the paper is an analysis of the correlation femtoscopy when the source size
The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus,
In this report we present the first quantitative determination of the correlations between baryons and anti-baryons induced by local baryon number conservation. This is important in view of the many experimental studies aiming at probing the phase st
One dimensional systems sometimes show pathologically slow decay of currents. This robustness can be traced to the fact that an integrable model is nearby in parameter space. In integrable models some part of the current can be conserved, explaining