ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Lagrangian Approach to pion photoproduction from the nucleon

121   0   0.0 ( 0 )
 نشر من قبل J. M. Udias
 تاريخ النشر 2005
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a pion photoproduction model on the free nucleon based on an Effective Lagrangian Approach (ELA) which includes the nucleon resonances ($Delta(1232)$, N(1440), N(1520), N(1535), $Delta (1620)$, N(1650), and $Delta (1700)$), in addition to Born and vector meson exchange terms. The model incorporates a new theoretical treatment of spin-3/2 resonances, first introduced by Pascalutsa, avoiding pathologies present in previous models. Other main features of the model are chiral symmetry, gauge invariance, and crossing symmetry. We use the model combined with modern optimization techniques to assess the parameters of the nucleon resonances on the basis of world data on electromagnetic multipoles. We present results for electromagnetic multipoles, differential cross sections, asymmetries, and total cross sections for all one pion photoproduction processes on free nucleons. We find overall agreement with data from threshold up to 1 GeV in laboratory frame.



قيم البحث

اقرأ أيضاً

112 - D. Ronchen , M. Doring , F. Huang 2014
The reactions $gamma ptopi^0 p$ and $gamma ptopi^+ n$ are analyzed in a semi-phenomenological approach up to $Esim2.3$ GeV. Fits to differential cross section and single and double polarization observables are performed. A good overall reproduction o f the available photoproduction data is achieved. The Julich2012 dynamical coupled-channel model -which describes elastic $pi N$ scattering and the world data base of the reactions $pi Ntoeta N$, $KLambda$, and $KSigma$ at the same time - is employed as the hadronic interaction in the final state. The framework guarantees analyticity and, thus, allows for a reliable extraction of resonance parameters in terms of poles and residues. In particular, the photocouplings at the pole can be extracted and are presented.
This paper discusses the derivation of an effective shell-model hamiltonian starting from a realistic nucleon-nucleon potential by way of perturbation theory. More precisely, we present the state of the art of this approach when the starting point is the perturbative expansion of the Q-box vertex function. Questions arising from diagrammatics, intermediate-states and order-by-order convergences, and their dependence on the chosen nucleon-nucleon potential, are discussed in detail, and the results of numerical applications for the p-shell model space starting from chiral next-to-next-to-next-to-leading order potentials are shown. Moreover, an alternative graphical method to derive the effective hamiltonian, based on the Z-box vertex function recently introduced by Suzuki et al., is applied to the case of a non-degenerate (0+2) hbaromega model space. Finally, our shell-model results are compared with the exact ones obtained from no-core shell-model calculations.
We present a simple description of pion-nucleon ($pi N$) scattering taking into account the full complexity of pion absorption and creation on the nucleon. To do this we solve Dyson-Schwinger equations within the framework of Time-Ordered Perturbatio n Theory. This enables us to construct partial wave separable $ pi N$ t matrices that can be useful in models of nuclear processes involving fully dressed nucleons. At the same time, our approach demonstrates features of Quantum Field Theory, like particle dressing, renormalisation, and the use of Dyson-Schwinger equations, in a non-relativistic context that is maximally close to that of Quantum Mechanics. For this reason, this article may also be of pedagogical interest.
Pion-photoproduction data is examined to check for the nucleon-helicity conservation predicted by asymptotic QCD. The differential cross section shows agreement with constituent-counting rules, and polarization data is not in disagreement with conser vation of nucleon helicity. However large uncertainties in the polarization measurements do not allow a conclusive statement. The helicity amplitudes from a partial-wave analysis are also examined for helicity conservation. While the amplitudes become small as $s$ increases, the $s$ dependence of the helicity-conserving amplitudes is similar to the dependence of the non-conserving amplitudes.
107 - J. Gonzalez-Fraile 2014
In a model independent framework, the effects of new physics at the electroweak scale can be parametrized in terms of an effective Lagrangian expansion. Assuming the $SU(2)_L x U(1)_Y$ gauge symmetry is linearly realized, the expansion at the lowest order span dimension--six operators built from the observed Standard model (SM) particles, in addition to a light scalar doublet. After a proper choice of the operator basis we present a global fit to all the updated available data related to the electroweak symmetry breaking sector: triple gauge boson vertex (TGV) collider measurements, electroweak precision tests and Higgs searches. In this framework modifications of the interactions of the Higgs field to the electroweak gauge bosons are related to anomalous TGVs, and given the current experimental precision, we show that the analysis of the latest Higgs boson data at the LHC and Tevatron gives rise to strong bounds on TGVs that are complementary to those from direct TGV measurements. Interestingly, we present how this correlated pattern of deviations from the SM predictions could be different for theories based on a non--linear realization of the $SU(2)_L x U(1)_Y$ symmetry, characteristic of for instance composite Higgs models. Furthermore, anomalous TGV signals expected at first order in the non--linear realization may appear only at higher orders of the linear one, and viceversa. Their study could lead to hints on the nature of the observed boson.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا