ﻻ يوجد ملخص باللغة العربية
We study the ground and low-lying excited states of O-15, O-17, N-15, and F-17 using modern two-body nucleon-nucleon interactions and the suitably designed variants of the ab initio equation-of-motion coupled-cluster theory aimed at an accurate description of systems with valence particles and holes. A number of properties of O-15, O-17, N-15, and F-17, including ways the energies of ground and excited states of valence systems around O-16 change as functions of the number of nucleons, are correctly reproduced by the equation-of-motion coupled-cluster calculations. Within a harmonic oscillator basis and large effective model spaces, our results are converged for the chosen two-body Hamiltonians. Thus, all disagreements with experiment are, most likely, due to the degrees of freedom such as three-body interactions not accounted for in our effective two-body Hamiltonians. In particular, the calculated binding energies of O-15/N-15 and O-17/F-17 enable us to rationalize the discrepancy between the experimental and recently published [Phys. Rev. Lett. 94, 212501 (2005)] equation-of-motion coupled-cluster excitation energies for the Jpi=3- state of O-16. The results demonstrate the feasibility of the equation-of-motion coupled-cluster methods to deal with valence systems around closed-shell nuclei and to provide precise results for systems beyond A=16.
Using the ground-state energy of 16-O obtained with the realistic V_UCOM interaction as a test case, we present a comprehensive comparison of different configuration interaction (CI) and coupled-cluster (CC) methods, analyzing the intrinsic advantage
We report converged results for the ground and excited states and matter density of 16-O using realistic two-body nucleon-nucleon interactions and coupled-cluster methods and formalism developed in quantum chemistry. Most of the binding is obtained w
We demonstrate the capability of coupled-cluster theory to compute the Coulomb sum rule for the $^4$He and $^{16}$O nuclei using interactions from chiral effective field theory. We perform several checks, including a few-body benchmark for $^4$He. We
We investigate the existence of weakly coupled gas-like states comprised of three $alpha$ particles around an $^{16}$O core in $^{28}$Si. We calculate the excited states in $^{28}$Si using the multi-configuration mixing method based on the $^{16}$O +
We have studied gas-like states of $alpha$ clusters around an $^{16}$O core in $^{24}$Mg based on a microscopic $alpha$-cluster model. This study was performed by introducing a Monte Carlo technique for the description of the THSR (Tohsaki Horiuchi S