ﻻ يوجد ملخص باللغة العربية
We address the problem of the bosonization of finite fermionic systems with two different approaches. First we work in the path integral formalism, showing how a truly bosonic effective action can be derived from a generic fermionic one with a quartic interaction. We then apply our scheme to the pairing hamiltonian in the degenerate case proving that, in this instance, several of the features characterizing the spontaneous breaking of the global gauge symmetry U(1) occurring in the infinite system persist in the finite system as well. Accordingly we interpret the excitations associated with the addition and removal of pairs of fermions as a quasi-Goldstone boson and the excitations corresponding to the breaking of a pair (seniority one states in the language of the pairing hamiltonian) as Higgs modes. Second, we face the more involved problem of a non-degenerate single particle spectrum, where one more kind of excitations arises, corresponding to the promotion of pairs to higher levels. This we do by solving directly the Richardson equations. From this analysis the existence emerges of critical values of the coupling constant, which signal the transition between two regimes, one dominated by the mean field physics, the other by the pairing interaction.
While coupled cluster theory accurately models weakly correlated quantum systems, it often fails in the presence of strong correlations where the standard mean-field picture is qualitatively incorrect. In many cases, these failures can be largely ame
We derive the exact $T=0$ seniority-zero eigenstates of the isovector pairing Hamiltonian for an even number of protons and neutrons. Nucleons are supposed to be distributed over a set of non-degenerate levels and to interact through a pairing force
We address the problem of two pairs of fermions living on an arbitrary number of single particle levels of a potential well (mean field) and interacting through a pairing force. The associated solutions of the Richardsons equations are classified in
As a first step to derive the IBM from a microscopic nuclear hamiltonian, we bosonize the pairing hamiltonian in the framework of the path integral formalism respecting both the particle number conservation and the Pauli principle. Special attention
We apply the functional bosonization procedure to a massive Dirac field defined on a 2+1 dimensional spacetime which has a non-trivial boundary. We find the form of the bosonized current both for the bulk and boundary modes, showing that the gauge fi