ترغب بنشر مسار تعليمي؟ اضغط هنا

Radiative capture and electromagnetic dissociation involving loosely bound nuclei: the $^8$B example

374   0   0.0 ( 0 )
 نشر من قبل Christian Forssen
 تاريخ النشر 2003
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Electromagnetic processes in loosely bound nuclei are investigated using an analytical model. In particular, electromagnetic dissociation of $^8$B is studied and the results of our analytical model are compared to numerical calculations based on a three-body picture of the $^8$B bound state. The calculation of energy spectra is shown to be strongly model dependent. This is demonstrated by investigating the sensitivity to the rms intercluster distance, the few-body behavior, and the effects of final state interaction. In contrast, the fraction of the energy spectrum which can be attributed to E1 transitions is found to be almost model independent at small relative energies. This finding is of great importance for astrophysical applications as it provides us with a new tool to extract the E1 component from measured energy spectra. An additional, and independent, method is also proposed as it is demonstrated how two sets of experimental data, obtained with different beam energy and/or minimum impact parameter, can be used to extract the E1 component.



قيم البحث

اقرأ أيضاً

In this paper we develop an analytical model in order to study electromagnetic processes involving loosely bound neutron--rich and proton--rich nuclei. We construct a model wave function, to describe loosely bound few--body systems, having the correc t behaviour both at large and small distances. The continuum states are approximated by regular Coulomb functions. As a test case we consider the two--body Coulomb dissociation of 8B and, the inverse, radiative capture reaction. The difference between using a pure two--body model and the results obtained when incorporating many--body effects, is investigated. We conclude that the interpretation of experimental data is highly model dependent and stress the importance of measuring few--body channels.
We present the results of a search for optical model potentials for use in the description of elastic scattering and transfer reactions involving stable and radioactive p-shell nuclei. This was done in connection with our program to use transfer reac tions to obtain data for nuclear astrophysics, in particular for the determination of the astrophysical S_17 factor for 7Be(p,gamma)8B using two (7Be,8B) proton transfer reactions. Elastic scattering was measured using 7Li, 10B, 13C and 14N projectiles on 9Be and 13C targets at or about E/A=10 MeV/nucleon. Woods-Saxon type optical model potentials were extracted and are compared with potentials obtained from a microscopic double folding model. We use these results to find optical model potentials for unstable nuclei with emphasis on the reliability of the description they provide for peripheral proton transfer reactions. We discuss the uncertainty introduced by the procedure in the prediction of the DWBA cross sections for the (7Be,8B) reactions used in extracting the astrophysical factor S_17(0).
A study of the interaction of loosely bound nuclei 6,7Li at 9 and 19 AMeV with light targets has been undertaken. With the determination of unambiguous optical potentials in mind, elastic data for four projectile-target combinations and one neutron t ransfer reaction 13C(7Li,8Li)12C have been measured on a large angular range. The kinematical regime encompasses a region where the mean field (optical potential) has a marked variation with mass and energy, but turns out to be sufficiently surface transparent to allow strong refractive effects to be manifested in elastic scattering data at intermediate angles. The identified exotic feature, a plateau in the angular distributions at intermediate angles, is fully confirmed in four reaction channels and interpreted as a pre-rainbow oscillation resulting from the interference of the barrier and internal barrier farside scattering subamplitudes.
149 - Cenxi Yuan , Chong Qi , Furong Xu 2014
The properties of loosely bound proton-rich nuclei around A = 20 are investigated within the framework of nuclear shell model. In these nuclei, the strength of the effective interactions involving the loosely bound proton s1=2 orbit are significantly reduced in comparison with those in their mirror nuclei. We evaluate the reduction of the effective interaction by calculating the monopole-baseduniversal interaction (VMU) in the Woods-Saxon basis. The shell-model Hamiltonian in the sd shell, such as USD, can thus be modified to reproduce the binding energies and energy levels of the weakly bound proton-rich nuclei around A = 20. The effect of the reduction of the effective interaction on the structure and decay properties of these nuclei is also discussed.
We present new experimental angular distributions for the elastic scattering of $^6$Li$+^{120}$Sn at three bombarding energies. We include these data in a wide systematic involving the elastic scattering of $^{4,6}$He, $^7$Li, $^9$Be, $^{10}$B and $^ {16,18}$O projectiles on the same target at energies around the respective Coulomb barriers. Considering this data set, we report on optical model analyses based on the double-folding Sao Paulo Potential. Within this approach, we study the sensitivity of the data fit to different models for the nuclear matter densities and to variations in the optical potential strengths.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا