ﻻ يوجد ملخص باللغة العربية
A new method for extracting neutron densities from intermediate energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological (DP) approach based on the Relativistic Impulse Approximation (RIA). Data sets for Ca40, Ca48 and Pb208 in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting data sets not included in the analysis. Using this global approach, energy independent neutron densities are obtained. The vector point proton density distribution is determined from the empirical charge density after unfolding the proton form factor. The other densities are parametrized. This work provides energy independent values for the RMS neutron radius, R_n and the neutron skin thickness, S_n, in contrast to the energy dependent values obtained by previous studies. In addition, the results presented in paper show that the expected rms neutron radius and skin thickness for Ca40 is accurately reproduced. The values of R_n and S_n obtained from the global fits that we consider to be the most reliable are given as follows: for Ca40 R_n is 3.314 > R_n > 3.310 fm and S_n is -0.063 > S_n > -0.067 fm; for Ca48 R_n is 3.459 > R_n > 3.413 fm and S_n is 0.102 > S_n > 0.056 fm; and for Pb208 R_n is 5.550 > R_n > 5.522 and S_n is 0.111 > S_n > 0.083 fm. These values are in reasonable agreement with nonrelativistic Skyrme Hartree-Fock models and with relativistic Hartree-Bogoliubov models with density-dependent meson-nucleon couplings. The results from the global fits for Ca48 and Pb208 are generally not in agreement with the usual relativistic mean-field models.
Vector analyzing power for the proton-6He elastic scattering at 71 MeV/nucleon has been measured for the first time, with a newly developed polarized proton solid target working at low magnetic field of 0.09 T. The results are found to be incompatibl
A microscopic optical potential (OP) is derived from NN chiral potentials at the first-order term within the spectator expansion of the multiple scattering theory and adopting the impulse approximation. The performances of our OP are compared with th
Recently developed chiral effective field theory models provide excellent descriptions of the bulk characteristics of finite nuclei, but have not been tested with other observables. In this work, densities from both relativistic point-coupling models
We investigate the sensitivity of the medium effect in the high-density region on the nucleus-nucleus elastic scattering in the framework of the double-folding (DF) model with the complex $G$-matrix interaction. The medium effect including three-body
Optical model potentials for elastic nucleon nucleus scattering are calculated for a number of target nuclides from a full-folding integral of two different realistic target density matrices together with full off-shell nucleon-nucleon t-matrices der