ﻻ يوجد ملخص باللغة العربية
Fusion-fission dynamics is investigated with a special emphasis on fusion reactions at low energy for which shell effects and pairing correlations can play a crucial role leading in particular to multi-modal fission. To follow the dynamical evolution of an excited and rotating nucleus we solve a 2-dimensional Langevin equation taking explicitly light-particle evaporation into account. The confrontation theory-experiment is demonstrated to give interesting information on the model presented, its qualities as well as its shortcomings.
Background: The influence of shell effect on the dynamics of the fusion fission process and its evolution with excitation energy in the pre-actinide Hg-Pb region in general is a matter of intense research in recent years. In particular, a strong ambi
Fission-fragment mass and total-kinetic-energy (TKE) distributions following fission of even-even nuclides in the region $74 leq Z leq 126$ and $92 leq N leq 230$, comprising 896 nuclides have been calculated using the Brownian shape-motion method. T
Random walks on five-dimensional potential-energy surfaces were recently found to yield fission-fragment mass distributions that are in remarkable agreement with experimental data. Within the framework of the Smoluchowski equation of motion, which is
We extend a conventional description of the fusion-fission fragment angular distributions by introducing the correlation between compound nucleus states carrying different total angular momenta. This correlation results in the strong anisotropy and m
Dilepton production in $pp$ and $Au+Au$ nucleus-nucleus collisions at $sqrt{s}$ = 200 GeV as well as in $In+In$ and $Pb+Au$ at 158 A$cdot$GeV is studied within the microscopic HSD transport approach. A comparison to the data from the PHENIX Collabora